This manual is to be used by qualified, professionally trained HVAC technicians only. Goodman does not assume any responsibility for property damage or personal injury due to improper service procedures or services performed by an unqualified person.
PRODUCT IDENTIFICATION

The model and manufacturing number are used for positive identification of component parts used in manufacturing. Please use these numbers when requesting service or parts information.

![Diagram of product identification]

WARNING

Disconnect ALL power before servicing or installing this unit. Multiple power sources may be present. Failure to do so may cause property damage, personal injury or death.

WARNING

Goodman will not be responsible for any injury or property damage arising from improper service or service procedures. If you install or perform service on this unit, you assume responsibility for any personal injury or property damage which may result. Many jurisdictions require a license to install or service heating and air conditioning equipment.

WARNING

Installation and repair of this unit should be performed ONLY by individuals meeting (at a minimum) the requirements of an "entry level technician" as specified by the Air-Conditioning, Heating, and Refrigeration Institute (AHRI). Attempting to install or repair this unit without such background may result in product damage, personal injury or death.
PRODUCT IDENTIFICATION

The model and manufacturing number are used for positive identification of component parts used in manufacturing. Please use these numbers when requesting service or parts information.

GPC1424H41AA
GPC1430H41AA
GPC1436H41AA
GPC1442H41AA
GPC1448H41AA
GPC1460H41AA

5mm
model specific
5 mm information
begins on page 29.

The United States Environmental Protection Agency (“EPA”) has issued various regulations regarding the introduction and disposal of refrigerants introduced into this unit. Failure to follow these regulations may harm the environment and can lead to the imposition of substantial fines. These regulations may vary by jurisdiction. Should questions arise, contact your local EPA office.

WARNING
Do not connect or use any device that is not design certified by Goodman for use with this unit. Serious property damage, personal injury, reduced unit performance and/or hazardous conditions may result from the use of such non-approved devices.

WARNING
To prevent the risk of property damage, personal injury, or death, do not store combustible materials or use gasoline or other flammable liquids or vapors in the vicinity of this appliance.
PRODUCT DESIGN

*PC14 Package Cooling Units are designed for outdoor installations only in either residential or light commercial applications.

The connecting ductwork (Supply and Return) can be connected for either horizontal or vertical airflow. In the vertical application a matching Roof Curb is recommended.

A return air filter must be installed behind the return air grille(s) or provision must be made for a filter in an accessible location within the return air duct. The minimum filter area should not be less than those sizes listed in the Specification Section. Under no circumstances should the unit be operated without return air filters.

A 3/4" PVC pipe is provided for removal of condensate water from the indoor coil. In order to provide proper condensate flow, a drain trap is supplied and shipped loose inside the unit for field installation. (Do not reduce the drain line size.)

Refrigerant flow control is achieved by use of restrictor orifices. *PC14 units use the FasTest Access Fitting System with a saddle that is either soldered to the suction and liquid lines or is fastened with a locking nut to the access fitting box (core) and then screwed into the saddle. Do not remove the core from the saddle until the refrigerant charge has been removed. Failure to do so could result in property damage or personal injury.

The single phase units use permanent split capacitor (PSC) design compressors. Starting components are therefore not required for these units. A low microfarad run capacitor assists the compressor to start and remains in the circuit during operation.

All *PC14 units have EEM indoor blower motors that are energized by a 24V signal from the thermostat and are constant torque motors with very low power consumption. The EEM features an integral control module.

Air for condensing (cooling cycle) is drawn through the outdoor coil by a propeller fan, and is discharged vertically out the top of the unit. The outdoor coil is designed for .0 static. No additional restriction (ductwork) shall be applied.

Conditioned air is drawn through the filter(s), field installed, across the coil and back into the conditioned space by the indoor blower.

PC1424-30H41 use Copeland Reciprocating Compressors. *PC1436-60H41* use Copeland Scroll Compressors. There are a number of design characteristics which are different from the traditional reciprocating compressor.

- Due to their design Scroll Compressors are inherently more tolerant of liquid refrigerant. **NOTE:** Even though the compressor section of a Scroll compressor is more tolerant of liquid refrigerant, continued floodback or flooded start conditions may wash oil from the bearing surfaces causing premature bearing failure.

- Scroll Compressors use white oil which is compatible with 3GS oil which may be used if additional oil is required.

- Operating pressures and amp draws may differ from standard reciprocating compressors. This information may be found in the "Cooling Performance Data" section.

Location and Clearances

NOTE: To ensure proper condensate drainage, unit must be installed in a level position.

- Outside Slab Installation - Horizontal (H)

Minimum clearances are required to avoid air recirculation and keep the unit operating at peak efficiency.
In installations where the unit is installed above ground level and not serviceable from the ground (Example: Roof Top installations), the installer must provide service platform for service person with rails or guards in accordance with local codes or ordinances or in their absence with the latest edition of the Uniform Mechanical Code Section 305.

NOTE: Unit can also use roof curb.

WARNING

TO PREVENT POSSIBLE PROPERTY DAMAGE, THE UNIT SHOULD REMAIN IN AN UPRIGHT POSITION DURING ALL RIGGING AND MOVING OPERATIONS. TO FACILITATE LIFTING AND MOVING IF A CRANE IS USED, PLACE THE UNIT IN AN ADEQUATE CABLE SLING.

Refer to Roof Curb Installation Instructions for proper curb installation. Curbing must be installed in compliance with the National Roofing Contractors Association Manual.
PRODUCT DIMENSIONS

*PC14[24-60]H41**

![Product Image]

<table>
<thead>
<tr>
<th>Chassis</th>
<th>Model</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Small</td>
<td>*PC1424</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>*PC1430</td>
<td>22</td>
<td>30</td>
</tr>
<tr>
<td>Medium</td>
<td>*PC1436</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>*PC1442</td>
<td>24</td>
<td>35</td>
</tr>
<tr>
<td>Large</td>
<td>*PC1448</td>
<td>24</td>
<td>38¾</td>
</tr>
<tr>
<td></td>
<td>*PC1460</td>
<td>24</td>
<td>38¾</td>
</tr>
</tbody>
</table>

Dimensions in inches
HKR ELECTRICAL DATA

PRODUCT DESIGN

- **PC14[24-60]H41**

<table>
<thead>
<tr>
<th>Model and Heat Kit Usage</th>
<th>Circuit #1</th>
<th>Circuit #2</th>
<th>Actual kW & BTU at 240V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Minimum Circuit Ampacity at 208 / 240V</td>
<td>Maximum Overcurrent Protection (amps) at 208 / 240V</td>
<td>Minimum Circuit Ampacity at 208 / 240V</td>
</tr>
<tr>
<td>PC1424H41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKR05*,C*</td>
<td>24 / 27</td>
<td>30 / 30</td>
<td>--</td>
</tr>
<tr>
<td>HKR08*,C*</td>
<td>33 / 38</td>
<td>40 / 40</td>
<td>--</td>
</tr>
<tr>
<td>HKR10*,C*</td>
<td>45 / 51</td>
<td>60 / 60</td>
<td>--</td>
</tr>
<tr>
<td>PC1430H41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKR05*,C*</td>
<td>24 / 27</td>
<td>30 / 30</td>
<td>--</td>
</tr>
<tr>
<td>HKR08*,C*</td>
<td>34 / 39</td>
<td>40 / 40</td>
<td>--</td>
</tr>
<tr>
<td>HKR10*,C*</td>
<td>45 / 52</td>
<td>60 / 60</td>
<td>--</td>
</tr>
<tr>
<td>HKR/P15*,C*</td>
<td>45 / 52</td>
<td>60 / 60</td>
<td>22 / 25</td>
</tr>
<tr>
<td>PC1436H41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKR05*,C*</td>
<td>24 / 27</td>
<td>30 / 30</td>
<td>--</td>
</tr>
<tr>
<td>HKR08*,C*</td>
<td>34 / 39</td>
<td>40 / 40</td>
<td>--</td>
</tr>
<tr>
<td>HKR10*,C*</td>
<td>45 / 52</td>
<td>60 / 60</td>
<td>--</td>
</tr>
<tr>
<td>HKR/P15*,C*</td>
<td>45 / 52</td>
<td>60 / 60</td>
<td>22 / 25</td>
</tr>
<tr>
<td>PC1442H41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKR05*,C*</td>
<td>25 / 27</td>
<td>30 / 30</td>
<td>--</td>
</tr>
<tr>
<td>HKR08*,C*</td>
<td>34 / 39</td>
<td>40 / 40</td>
<td>--</td>
</tr>
<tr>
<td>HKR10*,C*</td>
<td>46 / 52</td>
<td>60 / 60</td>
<td>--</td>
</tr>
<tr>
<td>HKR/P15*,C*</td>
<td>46 / 52</td>
<td>60 / 60</td>
<td>22 / 25</td>
</tr>
<tr>
<td>HKR/P20*,C*</td>
<td>46 / 52</td>
<td>60 / 60</td>
<td>43 / 49</td>
</tr>
<tr>
<td>PC1448H41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKR05*,C*</td>
<td>25 / 28</td>
<td>30 / 30</td>
<td>--</td>
</tr>
<tr>
<td>HKR08*,C*</td>
<td>34 / 40</td>
<td>40 / 40</td>
<td>--</td>
</tr>
<tr>
<td>HKR10*,C*</td>
<td>46 / 53</td>
<td>60 / 60</td>
<td>--</td>
</tr>
<tr>
<td>HKR/P15*,C*</td>
<td>46 / 52</td>
<td>60 / 60</td>
<td>22 / 25</td>
</tr>
<tr>
<td>HKR/P20*,C*</td>
<td>46 / 52</td>
<td>60 / 60</td>
<td>43 / 49</td>
</tr>
<tr>
<td>PC1460H41</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HKR05*,C*</td>
<td>26 / 30</td>
<td>30 / 30</td>
<td>--</td>
</tr>
<tr>
<td>HKR08*,C*</td>
<td>36 / 40</td>
<td>40 / 40</td>
<td>--</td>
</tr>
<tr>
<td>HKR10*,C*</td>
<td>48 / 54</td>
<td>60 / 60</td>
<td>--</td>
</tr>
<tr>
<td>HKR/P15*,C*</td>
<td>48 / 54</td>
<td>60 / 60</td>
<td>22 / 25</td>
</tr>
<tr>
<td>HKR/P20*,C*</td>
<td>48 / 54</td>
<td>60 / 60</td>
<td>43 / 49</td>
</tr>
</tbody>
</table>

IMPORTANT NOTE: A separate power supply is required for the HKR heater kit.

WARNING

All wires and overcurrent protection devices are sized for use with electric heaters only and without refrigeration. If heaters are not installed with above wire size, overheating and fire could occur. See PACKAGE COOLING SPECIFICATIONS section for minimum circuit ampacity and maximum overcurrent protection during refrigeration cycle.
<table>
<thead>
<tr>
<th>Part Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OT18-60A</td>
<td>Outdoor Thermostat Kit w/Lockout Stat</td>
</tr>
<tr>
<td>OT/EHR18-60</td>
<td>Emergency Heat Relay Kit</td>
</tr>
<tr>
<td>HKR</td>
<td>Electric Heat Kit</td>
</tr>
<tr>
<td>PCCP101-103</td>
<td>Roof Curb</td>
</tr>
<tr>
<td>PCP101-103</td>
<td>Downflow Plenum Kit</td>
</tr>
<tr>
<td>PCP101-103R8</td>
<td>Downflow Plenum Kit w/ R-8 Insulation</td>
</tr>
<tr>
<td>PCEC101-103</td>
<td>Downflow Economizer for GPC-(H) A/C - To Be Used With PCP101-103</td>
</tr>
<tr>
<td>PCEH101-103</td>
<td>Downflow Economizer for GPH-(H) Heat Pump - To Be Used With PCP101-103</td>
</tr>
<tr>
<td>PCMD101-103</td>
<td>Manual Damper - To Be Used With PCP101-103</td>
</tr>
<tr>
<td>PCMDM101-103</td>
<td>Motorized Damper - To Be Used With PCP101-103</td>
</tr>
<tr>
<td>GPHMD101-103</td>
<td>Manual Damper for Horizontal Applications</td>
</tr>
<tr>
<td>SQRPCH101</td>
<td>Square to Round Adapters 16" & 14"</td>
</tr>
<tr>
<td>SQRPCH102-103</td>
<td>Square to Round Adapters 18" & 14"</td>
</tr>
<tr>
<td>SQRPC101</td>
<td>Square to Round Adapter - For Use With PCCP101-103 Curb 16" Rounds</td>
</tr>
<tr>
<td>SQRPC102-103</td>
<td>Square to Round Adapter For Use With PCCP101-103 Curb 18" Rounds</td>
</tr>
<tr>
<td>PCFR101-103</td>
<td>External Horizontal Filter Rack</td>
</tr>
<tr>
<td>PCEF101-103</td>
<td>Elbow & Flashing w/ R-8 Liner</td>
</tr>
<tr>
<td>CDK36</td>
<td>Flush Mount Concentric Duct Kit</td>
</tr>
<tr>
<td>CDK36515</td>
<td>Flush Mount Concentric Duct Kit w/ Filter</td>
</tr>
<tr>
<td>CDK36530</td>
<td>Step Down Concentric Duct Kit</td>
</tr>
<tr>
<td>CDK36535</td>
<td>Step Down Concentric Duct Kit w/ Filter</td>
</tr>
<tr>
<td>CDK4872</td>
<td>Flush Mount Concentric Duct Kit</td>
</tr>
<tr>
<td>CDK4872515</td>
<td>Flush Mount Concentric Duct Kit w/ Filter</td>
</tr>
<tr>
<td>CDK4872530</td>
<td>Step Down Concentric Duct Kit</td>
</tr>
<tr>
<td>CDK4872535</td>
<td>Step Down Concentric Duct Kit w/ Filter</td>
</tr>
<tr>
<td>SPK30-60</td>
<td>Single Point Wiring Kit</td>
</tr>
<tr>
<td>Model</td>
<td>Speed</td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>GPC14[24-60]H41A*/B*</td>
<td>T1, T2, T3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. Data shown is dry coil. Wet coil pressure drop is approx.
2. 0.1" H₂O, for 2 row indoor coil; 0.2" H₂O, for 3 row indoor coil; and 0.3" H₂O, for 4 row indoor coil.
3. Data shown does not include filter pressure drop, approx. 0.08" H₂O.
4. Reduce airflow by 2% for 208V operation.
BLOWER PERFORMANCE DATA

GPC14[24-60]H41CA

Dry Coil Data

<table>
<thead>
<tr>
<th>Model</th>
<th>Speed</th>
<th>Volts</th>
<th>E.S.P (In. of H₂O)</th>
<th>0.1</th>
<th>0.2</th>
<th>0.3</th>
<th>0.4</th>
<th>0.5</th>
<th>0.6</th>
<th>0.7</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
<tr>
<td>T1, 230</td>
<td></td>
</tr>
<tr>
<td>T2, T3, 230</td>
<td></td>
</tr>
<tr>
<td>T4, T5, 230</td>
<td></td>
</tr>
</tbody>
</table>
|-------------|-------|-------|---
BTU OUTPUT vs TEMPERATURE RISE CHART

FORMULAS

- BTU OUTPUT = CFM x 1.08 x RISE
- RISE = \(\frac{\text{BTU OUTPUT}}{1.08} \) ÷ CFM

Diagram:
- The graph shows the relationship between BTU output and temperature rise for different CFM values (600, 700, 800, 900, 1000, 1100, 1200, 1400, 1600, 1800, 2000, 2200, 2400 CFM).
- The X-axis represents the output BTU per hour (x 1000), ranging from 30 to 150.
- The Y-axis represents the temperature rise, ranging from 10 to 100.
PACKAGE COOLING SPECIFICATIONS

<table>
<thead>
<tr>
<th>Model Code</th>
<th>GPC1424H41AA</th>
<th>GPC1430H41AA</th>
<th>GPC1436H41AA</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLING</td>
<td>COOLING CAPACITY, BTUH</td>
<td>24,600</td>
<td>28,400</td>
</tr>
<tr>
<td>CAPACITY</td>
<td>SEER / EER</td>
<td>14.5 / 12.1</td>
<td>14.0 / 12.1</td>
</tr>
<tr>
<td>UNIT ELECTRICAL SPECIFICATION</td>
<td>VOLTAGE (NAMEPLATE)</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
</tr>
<tr>
<td></td>
<td>AMPS (TOTAL)</td>
<td>10.5</td>
<td>13.16</td>
</tr>
<tr>
<td></td>
<td>MINIMUM CIRCUIT AMPACITY</td>
<td>12.5</td>
<td>15.6</td>
</tr>
<tr>
<td></td>
<td>MAXIMUM OVERCURRENT PROTECTION (1)</td>
<td>20</td>
<td>25</td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td>TYPE</td>
<td>RECIP</td>
<td>RECIP</td>
</tr>
<tr>
<td></td>
<td>RATED LOAD AMPS</td>
<td>7.9</td>
<td>9.8</td>
</tr>
<tr>
<td></td>
<td>LOCKED ROTOR AMPS</td>
<td>41</td>
<td>55</td>
</tr>
<tr>
<td>CONDENSER FAN MOTOR</td>
<td>HORSEPOWER</td>
<td>1/6</td>
<td>1/4</td>
</tr>
<tr>
<td></td>
<td>RPM</td>
<td>815</td>
<td>830</td>
</tr>
<tr>
<td></td>
<td>FULL LOAD AMPS</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td>LOCKED ROTOR AMPS</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>CONDENSER FAN</td>
<td>BLADE DIAMETER (INCHES) / # OF BLADES</td>
<td>22 / 3</td>
<td>22 / 3</td>
</tr>
<tr>
<td>CONDENSER</td>
<td>FACE AREA - SQ. FT.</td>
<td>13.4</td>
<td>13.4</td>
</tr>
<tr>
<td>COIL</td>
<td>NUMBER OF ROWS</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>FINS PER INCH</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>EVAPORATOR BLOWER MOTOR</td>
<td>HORSEPOWER - NO. OF SPEEDS</td>
<td>1/2 - 5</td>
<td>1/2 - 5</td>
</tr>
<tr>
<td></td>
<td>FULL LOAD AMPS</td>
<td>1.5</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>LOCKED ROTOR AMPS</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>MOTOR SPEED TAP - COOLING</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td></td>
<td>RPM</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>EVAPORATOR BLOWER</td>
<td>DIAMETER X WIDTH (INCHES)</td>
<td>10 X 8</td>
<td>10 X 8</td>
</tr>
<tr>
<td></td>
<td>HI EFFICIENCY COOLING CFM</td>
<td>850</td>
<td>1,050</td>
</tr>
<tr>
<td></td>
<td>5 TON NOMINAL COOLING CFM</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>FAN ONLY COOLING CFM</td>
<td>800</td>
<td>950</td>
</tr>
<tr>
<td></td>
<td>MAX EXTERNAL STATIC PRESS ("w.c.)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>FILTER SIZE - SQ. FT. *</td>
<td>20 x 20 x 1</td>
<td>20 x 25 x 1</td>
</tr>
<tr>
<td></td>
<td>DRAIN SIZE (INCHES)</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td></td>
<td>EXPANSION DEVICE</td>
<td>ORIFICE (0.057)</td>
<td>ORIFICE (0.060)</td>
</tr>
<tr>
<td></td>
<td>REFRIGERANT CHARGE R-410A (Oz.)</td>
<td>83</td>
<td>78</td>
</tr>
<tr>
<td></td>
<td>POWER SUPPLY CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>3/4, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
</tr>
<tr>
<td></td>
<td>LOW VOLTAGE CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td></td>
<td>SHIPPING WEIGHT LBS.</td>
<td>310</td>
<td>310</td>
</tr>
<tr>
<td></td>
<td>OPERATING WEIGHT LBS.</td>
<td>300</td>
<td>300</td>
</tr>
</tbody>
</table>

(1) Maximum Overcurrent Protection Device: MUST use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.

* Calculated external filter size based on air velocity of 300 ft/min.

Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.

Unit specifications are subject to change without notice. ALWAYS refer to the units serial plate for the most up-to-date general and electrical information.

IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
PACKAGE COOLING SPECIFICATIONS

GPC1442H41AA

<table>
<thead>
<tr>
<th>COOLING CAPACITY, BTUH</th>
<th>40,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEER / EER</td>
<td>14.2 / 12.0</td>
</tr>
</tbody>
</table>

UNIT ELECTRICAL SPECIFICATION

<table>
<thead>
<tr>
<th>UNIT VOLTAGE (NAMEPLATE)</th>
<th>208-230/1/60</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPS (TOTAL)</td>
<td>22.2</td>
</tr>
<tr>
<td>MINIMUM CIRCUIT AMPACITY</td>
<td>26.6</td>
</tr>
</tbody>
</table>

MAXIMUM OVERCURRENT PROTECTION

| (1) | 40 |

COMPRESSOR TYPE

<table>
<thead>
<tr>
<th>SCROLL</th>
</tr>
</thead>
</table>

RATED LOAD AMPS

| 17.9 |

LOCKED ROTOR AMPS

| 112 |

CONDENSER HORSEPOWER

| 1/4 |

FAN MOTOR RPM

| 1075 |

FULL LOAD AMPS

| 1.4 |

LOCKED ROTOR AMPS

| 2.9 |

CONDENSER FAN BLADE DIAMETER (INCHES) / # OF BLADES

| 22 / 4 |

CONDENSER FACE AREA - SQ. FT.

| 17.0 |

COIL NUMBER OF ROWS

| 1 |

FINS PER INCH

| 24 |

EVAPORATOR HORSEPOWER - NO. OF SPEEDS

| 1/2 - 5 |

BLOWER FULL LOAD AMPS

| 2.9 |

MOTOR LOCKED ROTOR AMPS

| NA |

MOTOR SPEED TAP - COOLING

| T2 |

DIA Diameter X Width (INCHES)

| 10 x 8 |

HI EFFICIENCY COOLING CFM

| 1,300 |

5 TON NOMINAL COOLING CFM

| NA |

FAN ONLY COOLING CFM

| 1,200 |

MAX EXTERNAL STATIC PRESS ("w.c.)

| 0.5 |

EVAPORATOR FACE AREA - SQ. FT.

| 6.2 |

COIL NUMBER OF ROWS

| 4 |

FINS PER INCH

| 14 |

GENERAL INFORMATION FILTER SIZE - SQ. FT.

| (2) 20 x 20 x 1 |

DRAIN SIZE (INCHES)

| 3/4" |

EXPANSION DEVICE ORIFICE (0.072)

| 118 |

REFRIGERANT CHARGE R-410A (Oz.)

| 123 |

POWER SUPPLY CONDUIT KNOCKOUT SIZE (IN.)

| 3/4, 1, 1-1/4 |

LOW VOLTAGE CONDUIT KNOCKOUT SIZE (IN.)

| 3/4, 1, 1-1/4 |

SHIPPING WEIGHT LBS.

| 370 |

OPERATING WEIGHT LBS.

| 360 |

(1) Maximum Overcurrent Protection Device: MUST use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.

*Calculated external filter size based on air velocity of 300 ft/min.

Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.

Unit specifications are subject to change without notice. ALWAYS refer to the units serial plate for the most up-to-date general and electrical information.

IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
OUTDOOR AMBIENT TEMPERATURE

ENTERING INDOOR WET BULB TEMPERATURE

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>22.8</td>
<td>23.5</td>
<td>25.4</td>
<td>27.3</td>
</tr>
<tr>
<td>75</td>
<td>21.7</td>
<td>22.3</td>
<td>24.1</td>
<td>25.9</td>
</tr>
<tr>
<td>95</td>
<td>20.1</td>
<td>20.7</td>
<td>22.4</td>
<td>24.0</td>
</tr>
<tr>
<td>115</td>
<td>19.5</td>
<td>20.1</td>
<td>21.7</td>
<td>23.3</td>
</tr>
</tbody>
</table>

MBH

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>22.8</td>
<td>23.5</td>
<td>25.4</td>
<td>27.3</td>
</tr>
<tr>
<td>75</td>
<td>21.7</td>
<td>22.3</td>
<td>24.1</td>
<td>25.9</td>
</tr>
<tr>
<td>95</td>
<td>20.1</td>
<td>20.7</td>
<td>22.4</td>
<td>24.0</td>
</tr>
<tr>
<td>115</td>
<td>19.5</td>
<td>20.1</td>
<td>21.7</td>
<td>23.3</td>
</tr>
</tbody>
</table>

S/T

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>0.86</td>
<td>0.79</td>
<td>0.60</td>
<td>0.38</td>
</tr>
<tr>
<td>75</td>
<td>0.92</td>
<td>0.82</td>
<td>0.62</td>
<td>0.40</td>
</tr>
<tr>
<td>95</td>
<td>0.92</td>
<td>0.83</td>
<td>0.63</td>
<td>0.40</td>
</tr>
<tr>
<td>115</td>
<td>0.92</td>
<td>0.83</td>
<td>0.63</td>
<td>0.40</td>
</tr>
</tbody>
</table>

DELTA T

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>22.8</td>
<td>23.5</td>
<td>25.4</td>
<td>27.3</td>
</tr>
<tr>
<td>75</td>
<td>21.7</td>
<td>22.3</td>
<td>24.1</td>
<td>25.9</td>
</tr>
<tr>
<td>95</td>
<td>20.1</td>
<td>20.7</td>
<td>22.4</td>
<td>24.0</td>
</tr>
<tr>
<td>115</td>
<td>19.5</td>
<td>20.1</td>
<td>21.7</td>
<td>23.3</td>
</tr>
</tbody>
</table>

KW

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>22.8</td>
<td>23.5</td>
<td>25.4</td>
<td>27.3</td>
</tr>
<tr>
<td>75</td>
<td>21.7</td>
<td>22.3</td>
<td>24.1</td>
<td>25.9</td>
</tr>
<tr>
<td>95</td>
<td>20.1</td>
<td>20.7</td>
<td>22.4</td>
<td>24.0</td>
</tr>
<tr>
<td>115</td>
<td>19.5</td>
<td>20.1</td>
<td>21.7</td>
<td>23.3</td>
</tr>
</tbody>
</table>

AMPs

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>0.86</td>
<td>0.79</td>
<td>0.60</td>
<td>0.38</td>
</tr>
<tr>
<td>75</td>
<td>0.92</td>
<td>0.82</td>
<td>0.62</td>
<td>0.40</td>
</tr>
<tr>
<td>95</td>
<td>0.92</td>
<td>0.83</td>
<td>0.63</td>
<td>0.40</td>
</tr>
<tr>
<td>115</td>
<td>0.92</td>
<td>0.83</td>
<td>0.63</td>
<td>0.40</td>
</tr>
</tbody>
</table>

HI PR

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>22.8</td>
<td>23.5</td>
<td>25.4</td>
<td>27.3</td>
</tr>
<tr>
<td>75</td>
<td>21.7</td>
<td>22.3</td>
<td>24.1</td>
<td>25.9</td>
</tr>
<tr>
<td>95</td>
<td>20.1</td>
<td>20.7</td>
<td>22.4</td>
<td>24.0</td>
</tr>
<tr>
<td>115</td>
<td>19.5</td>
<td>20.1</td>
<td>21.7</td>
<td>23.3</td>
</tr>
</tbody>
</table>

LO PR

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>95</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>0.86</td>
<td>0.79</td>
<td>0.60</td>
<td>0.38</td>
</tr>
<tr>
<td>75</td>
<td>0.92</td>
<td>0.82</td>
<td>0.62</td>
<td>0.40</td>
</tr>
<tr>
<td>95</td>
<td>0.92</td>
<td>0.83</td>
<td>0.63</td>
<td>0.40</td>
</tr>
<tr>
<td>115</td>
<td>0.92</td>
<td>0.83</td>
<td>0.63</td>
<td>0.40</td>
</tr>
</tbody>
</table>

* IDB: Entering Indoor Dry Bulb Temperature

NOTE: Shaded area is ACCA (TVA) conditions

High and low pressures are measured at the liquid and suction access fittings.
EXPANDED PERFORMANCE DATA

COOLING OPERATION

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>IDB</th>
<th>Airflow</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MBR</td>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>S/T</td>
<td>0.93</td>
<td>0.87</td>
<td>0.71</td>
<td>0.53</td>
<td>0.66</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>Delta T</td>
<td>22</td>
<td>21</td>
<td>19</td>
<td>15</td>
<td>23</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>kW</td>
<td>1.60</td>
<td>1.63</td>
<td>1.69</td>
<td>1.74</td>
<td>1.72</td>
<td>1.76</td>
</tr>
<tr>
<td></td>
<td>AMPS</td>
<td>8.8</td>
<td>6.9</td>
<td>7.1</td>
<td>7.4</td>
<td>7.3</td>
<td>7.4</td>
</tr>
<tr>
<td></td>
<td>HI PR</td>
<td>238</td>
<td>256</td>
<td>271</td>
<td>282</td>
<td>267</td>
<td>288</td>
</tr>
<tr>
<td></td>
<td>LO PR</td>
<td>114</td>
<td>121</td>
<td>132</td>
<td>149</td>
<td>120</td>
<td>132</td>
</tr>
</tbody>
</table>

Entering Indoor Wet Bulb Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
</tr>
<tr>
<td>MBR</td>
</tr>
<tr>
<td>S/T</td>
</tr>
<tr>
<td>Delta T</td>
</tr>
<tr>
<td>kW</td>
</tr>
<tr>
<td>AMPS</td>
</tr>
<tr>
<td>HI PR</td>
</tr>
<tr>
<td>LO PR</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects AHRI rating conditions.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>KW</th>
<th>LO PR</th>
<th>MY</th>
<th>S/T</th>
<th>AMPS</th>
<th>HPR</th>
<th>LPR</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>24.2</td>
<td>1.54</td>
<td>1.58</td>
<td>6.7</td>
<td>238</td>
<td>110</td>
</tr>
<tr>
<td>850</td>
<td>22.4</td>
<td>1.54</td>
<td>1.58</td>
<td>6.7</td>
<td>238</td>
<td>110</td>
</tr>
</tbody>
</table>

NOTE: Shaded area is AHRI Rating Conditions.

High and low pressures are measured at the liquid and suction access fittings.

Amps: Unit amps (comp. + evaporator + condenser fan motors)

High and low pressures are measured at the liquid and suction access fittings.
<table>
<thead>
<tr>
<th>Airflow</th>
<th>MBh</th>
<th>63</th>
<th>67</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>27.8</td>
<td>28.8</td>
<td>31.6</td>
<td>-</td>
<td>27.9</td>
<td>28.2</td>
<td>30.9</td>
<td>-</td>
<td>26.5</td>
<td>27.5</td>
<td>30.1</td>
<td>-</td>
<td>25.9</td>
<td>26.8</td>
<td>29.4</td>
<td>-</td>
<td>24.6</td>
<td>25.5</td>
<td>27.9</td>
</tr>
<tr>
<td>S/T</td>
<td>0.76</td>
<td>0.63</td>
<td>0.44</td>
<td>-</td>
<td>0.79</td>
<td>0.66</td>
<td>0.46</td>
<td>-</td>
<td>0.81</td>
<td>0.67</td>
<td>0.47</td>
<td>-</td>
<td>0.83</td>
<td>0.70</td>
<td>0.48</td>
<td>-</td>
<td>0.87</td>
<td>0.72</td>
<td>0.50</td>
</tr>
<tr>
<td>Delta T</td>
<td>16</td>
<td>14</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>75</td>
<td>21.0</td>
<td>22.0</td>
<td>24.0</td>
<td>-</td>
<td>21.4</td>
<td>22.8</td>
<td>25.2</td>
<td>-</td>
<td>20.9</td>
<td>22.3</td>
<td>24.7</td>
<td>-</td>
<td>21.0</td>
<td>22.4</td>
<td>24.9</td>
<td>-</td>
<td>20.4</td>
<td>21.8</td>
<td>24.2</td>
</tr>
<tr>
<td>S/T</td>
<td>0.72</td>
<td>0.60</td>
<td>0.42</td>
<td>-</td>
<td>0.78</td>
<td>0.64</td>
<td>0.46</td>
<td>-</td>
<td>0.80</td>
<td>0.66</td>
<td>0.48</td>
<td>-</td>
<td>0.83</td>
<td>0.69</td>
<td>0.49</td>
<td>-</td>
<td>0.83</td>
<td>0.70</td>
<td>0.49</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>85</td>
<td>16.5</td>
<td>17.5</td>
<td>20.5</td>
<td>-</td>
<td>17.1</td>
<td>18.2</td>
<td>20.5</td>
<td>-</td>
<td>16.6</td>
<td>17.7</td>
<td>20.0</td>
<td>-</td>
<td>16.7</td>
<td>17.9</td>
<td>20.3</td>
<td>-</td>
<td>16.1</td>
<td>17.2</td>
<td>19.6</td>
</tr>
<tr>
<td>S/T</td>
<td>0.70</td>
<td>0.58</td>
<td>0.40</td>
<td>-</td>
<td>0.75</td>
<td>0.61</td>
<td>0.43</td>
<td>-</td>
<td>0.78</td>
<td>0.63</td>
<td>0.45</td>
<td>-</td>
<td>0.80</td>
<td>0.66</td>
<td>0.47</td>
<td>-</td>
<td>0.80</td>
<td>0.66</td>
<td>0.47</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>95</td>
<td>11.5</td>
<td>12.5</td>
<td>15.5</td>
<td>-</td>
<td>12.0</td>
<td>13.3</td>
<td>16.3</td>
<td>-</td>
<td>11.7</td>
<td>12.9</td>
<td>15.9</td>
<td>-</td>
<td>11.9</td>
<td>13.2</td>
<td>16.2</td>
<td>-</td>
<td>11.4</td>
<td>12.6</td>
<td>15.6</td>
</tr>
<tr>
<td>S/T</td>
<td>0.64</td>
<td>0.51</td>
<td>0.38</td>
<td>-</td>
<td>0.66</td>
<td>0.53</td>
<td>0.39</td>
<td>-</td>
<td>0.67</td>
<td>0.54</td>
<td>0.40</td>
<td>-</td>
<td>0.69</td>
<td>0.55</td>
<td>0.41</td>
<td>-</td>
<td>0.69</td>
<td>0.55</td>
<td>0.41</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>17</td>
</tr>
<tr>
<td>105</td>
<td>7.5</td>
<td>8.5</td>
<td>11.5</td>
<td>-</td>
<td>8.5</td>
<td>9.7</td>
<td>12.3</td>
<td>-</td>
<td>8.3</td>
<td>9.5</td>
<td>12.0</td>
<td>-</td>
<td>8.6</td>
<td>9.7</td>
<td>12.3</td>
<td>-</td>
<td>8.2</td>
<td>9.2</td>
<td>11.9</td>
</tr>
<tr>
<td>S/T</td>
<td>0.58</td>
<td>0.45</td>
<td>0.31</td>
<td>-</td>
<td>0.61</td>
<td>0.47</td>
<td>0.32</td>
<td>-</td>
<td>0.61</td>
<td>0.47</td>
<td>0.33</td>
<td>-</td>
<td>0.63</td>
<td>0.49</td>
<td>0.34</td>
<td>-</td>
<td>0.63</td>
<td>0.50</td>
<td>0.34</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>17</td>
</tr>
</tbody>
</table>

Note: Shaded area is ACCA (TVA) conditions.
EXPANDED PERFORMANCE DATA

COOLING OPERATION

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>Entering Indoor Wet Bulb Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>75</td>
</tr>
<tr>
<td>85</td>
<td>95</td>
</tr>
<tr>
<td>105</td>
<td>115</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDB</th>
<th>Airflow</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>1180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Delta T</td>
<td></td>
</tr>
<tr>
<td></td>
<td>AMPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>HI PR</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LO PR</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
</tr>
<tr>
<td>920</td>
<td></td>
</tr>
</tbody>
</table>

| NOTE: Shaded area reflects AHRI rating conditions

MODEL: GPC1430H41AA

- High and low pressures are measured at the liquid and suction access fittings.
- AMPS: Unit amps (comp. + evaporator + condenser fan motors)

Key Data Points

- **Outdoor Ambient Temperature:** 65, 75, 85, 95, 105, 115
- **Entering Indoor Wet Bulb Temperature:** 65, 75, 85, 95, 105, 115

| IDB | Airflow | High and low pressures are measured at the liquid and suction access fittings. | AMPS: Unit amps (comp. + evaporator + condenser fan motors) | NOTE: Shaded area reflects AHRI rating conditions |
Expanded Performance Data

Cooling Operation

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>Entering Indoor Wet Bulb Temperature</th>
<th>Delta T</th>
<th>KW</th>
<th>AMPS</th>
<th>HI PR</th>
<th>LO PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td>59 63 67 71</td>
<td>34.9 36.2 39.6</td>
<td>1.76 0.64 0.44</td>
<td>18 16 16</td>
<td>2.33 2.38 2.45</td>
<td>10.5 10.8 11.0</td>
</tr>
<tr>
<td>75</td>
<td>59 63 67 71</td>
<td>34.9 36.2 39.6</td>
<td>1.76 0.64 0.44</td>
<td>18 16 16</td>
<td>2.33 2.38 2.45</td>
<td>10.5 10.8 11.0</td>
</tr>
<tr>
<td>85</td>
<td>59 63 67 71</td>
<td>34.9 36.2 39.6</td>
<td>1.76 0.64 0.44</td>
<td>18 16 16</td>
<td>2.33 2.38 2.45</td>
<td>10.5 10.8 11.0</td>
</tr>
<tr>
<td>95</td>
<td>59 63 67 71</td>
<td>34.9 36.2 39.6</td>
<td>1.76 0.64 0.44</td>
<td>18 16 16</td>
<td>2.33 2.38 2.45</td>
<td>10.5 10.8 11.0</td>
</tr>
<tr>
<td>105</td>
<td>59 63 67 71</td>
<td>34.9 36.2 39.6</td>
<td>1.76 0.64 0.44</td>
<td>18 16 16</td>
<td>2.33 2.38 2.45</td>
<td>10.5 10.8 11.0</td>
</tr>
<tr>
<td>115</td>
<td>59 63 67 71</td>
<td>34.9 36.2 39.6</td>
<td>1.76 0.64 0.44</td>
<td>18 16 16</td>
<td>2.33 2.38 2.45</td>
<td>10.5 10.8 11.0</td>
</tr>
</tbody>
</table>

*IDB: Entering Indoor Dry Bulb Temperature

Note: Shaded area is ACCA (TVA) conditions.
Expanded Performance Data

Cooling Operation

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>Entering Indoor Wet Bulb Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model: GPC1436H41A*</td>
<td>Expanding Performance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Airflow (IDB) & Performance

<table>
<thead>
<tr>
<th>IDB</th>
<th>Airflow</th>
<th>Temperature</th>
<th>MBt</th>
</tr>
</thead>
</table>

Notes

- **NOTE:** Shaded area reflects AHRI rating conditions.

High and low pressures are measured at the liquid and suction access fittings.

AMPS: Unit amps (comp. + evaporator + condenser fan motors)

Additional Information

- **KW = Total system power**

Model: GPC1436H41A*
EXPANDED PERFORMANCE DATA

COOLING OPERATION

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th></th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBh</td>
<td>39.7</td>
<td>41.1</td>
<td>45.1</td>
<td>-</td>
<td>38.8</td>
<td>41.1</td>
</tr>
<tr>
<td>S/T</td>
<td>0.75</td>
<td>0.63</td>
<td>0.43</td>
<td>-</td>
<td>0.78</td>
<td>0.65</td>
</tr>
<tr>
<td>KW</td>
<td>2.54</td>
<td>2.60</td>
<td>2.68</td>
<td>-</td>
<td>2.74</td>
<td>2.80</td>
</tr>
<tr>
<td>AMPS</td>
<td>11.6</td>
<td>11.8</td>
<td>12.1</td>
<td>-</td>
<td>12.4</td>
<td>12.6</td>
</tr>
<tr>
<td>HI PR</td>
<td>2.36</td>
<td>2.54</td>
<td>2.66</td>
<td>-</td>
<td>2.65</td>
<td>2.85</td>
</tr>
<tr>
<td>LO PR</td>
<td>11.0</td>
<td>116.12</td>
<td>117.12</td>
<td>-</td>
<td>120.12</td>
<td>124.12</td>
</tr>
</tbody>
</table>

Entering Indoor Wet Bulb Temperature

<table>
<thead>
<tr>
<th></th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td></td>
</tr>
<tr>
<td>MBh</td>
<td>38.5</td>
<td>39.9</td>
<td>43.8</td>
<td>-</td>
<td>37.6</td>
<td>39.0</td>
<td>42.7</td>
<td>-</td>
<td>36.7</td>
<td>38.1</td>
<td>41.7</td>
<td>-</td>
</tr>
<tr>
<td>S/T</td>
<td>0.72</td>
<td>0.60</td>
<td>0.41</td>
<td>-</td>
<td>0.74</td>
<td>0.62</td>
<td>0.43</td>
<td>-</td>
<td>0.76</td>
<td>0.64</td>
<td>0.44</td>
<td>-</td>
</tr>
<tr>
<td>KW</td>
<td>2.52</td>
<td>2.58</td>
<td>2.66</td>
<td>-</td>
<td>2.72</td>
<td>2.78</td>
<td>2.87</td>
<td>-</td>
<td>2.82</td>
<td>2.88</td>
<td>2.96</td>
<td>-</td>
</tr>
<tr>
<td>AMPS</td>
<td>11.1</td>
<td>11.7</td>
<td>12.0</td>
<td>-</td>
<td>12.3</td>
<td>12.5</td>
<td>12.9</td>
<td>-</td>
<td>12.9</td>
<td>13.2</td>
<td>13.5</td>
<td>-</td>
</tr>
<tr>
<td>HI PR</td>
<td>2.34</td>
<td>2.51</td>
<td>2.66</td>
<td>-</td>
<td>2.62</td>
<td>2.82</td>
<td>2.98</td>
<td>-</td>
<td>2.98</td>
<td>3.21</td>
<td>3.49</td>
<td>-</td>
</tr>
<tr>
<td>LO PR</td>
<td>108.15</td>
<td>115.12</td>
<td>115.12</td>
<td>-</td>
<td>113.12</td>
<td>113.12</td>
<td>113.12</td>
<td>-</td>
<td>115.12</td>
<td>118.12</td>
<td>135.15</td>
<td>-</td>
</tr>
</tbody>
</table>

High and low pressures are measured at the liquid and suction access fittings.
COOLING PERFORMANCE DATA

MODEL: GPC1442H41A

EXPANDED PERFORMANCE DATA

COOLING OPERATION

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDB</th>
<th>Airflow</th>
<th>MBh</th>
<th>S/T</th>
<th>Delta T</th>
<th>AMPS</th>
<th>HI PR</th>
<th>LO PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1461</td>
<td>MBh</td>
<td>41.1</td>
<td>2.50</td>
<td>0.78</td>
<td>0.98</td>
<td>1.68</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>S/T</td>
<td>0.89</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Delta T</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>AMPS</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
</tr>
<tr>
<td></td>
<td>HI PR</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>LO PR</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
</tr>
</tbody>
</table>

NOTE:
- Shaded area reflects AHRI rating conditions
- KW = Total system power
- High and low pressures are measured at the liquid and suction access fittings
- AMPS: Unit amps (comp.+ evaporator + condenser fan motors)

CoolinG PeRfOrrmancE dAta

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>IDB</th>
<th>Airflow</th>
<th>MBh</th>
<th>S/T</th>
<th>Delta T</th>
<th>AMPS</th>
<th>HI PR</th>
<th>LO PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>1461</td>
<td>MBh</td>
<td>41.1</td>
<td>2.50</td>
<td>0.78</td>
<td>0.98</td>
<td>1.68</td>
<td>3.98</td>
</tr>
<tr>
<td></td>
<td>S/T</td>
<td>0.89</td>
<td>0.98</td>
<td>0.97</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>Delta T</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>AMPS</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
<td>118.0</td>
</tr>
<tr>
<td></td>
<td>HI PR</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td></td>
<td>LO PR</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>107</td>
</tr>
</tbody>
</table>

NOTE:
- Shaded area reflects AHRI rating conditions
- KW = Total system power
- High and low pressures are measured at the liquid and suction access fittings
- AMPS: Unit amps (comp.+ evaporator + condenser fan motors)
MODEL: GPC1448H41A

EXPANDED PERFORMANCE DATA

COOLING OPERATION

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterin g Indoor Wet Bulb Temperature</td>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>AMPS</td>
<td>12.6</td>
<td>13.0</td>
<td>13.4</td>
<td>13.8</td>
<td>14.2</td>
<td>14.6</td>
</tr>
<tr>
<td>LO PR</td>
<td>109</td>
<td>115</td>
<td>121</td>
<td>127</td>
<td>133</td>
<td>140</td>
</tr>
<tr>
<td>HI PR</td>
<td>238</td>
<td>256</td>
<td>274</td>
<td>292</td>
<td>310</td>
<td>328</td>
</tr>
<tr>
<td>S/T</td>
<td>0.87</td>
<td>0.90</td>
<td>0.93</td>
<td>0.96</td>
<td>0.99</td>
<td>1.02</td>
</tr>
<tr>
<td>MBh</td>
<td>46.3</td>
<td>46.7</td>
<td>47.1</td>
<td>47.5</td>
<td>47.9</td>
<td>48.3</td>
</tr>
<tr>
<td>Delta T</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>KW</td>
<td>28.5</td>
<td>29.1</td>
<td>30.0</td>
<td>30.8</td>
<td>31.7</td>
<td>32.6</td>
</tr>
<tr>
<td>AMPS</td>
<td>12.3</td>
<td>12.6</td>
<td>13.0</td>
<td>13.4</td>
<td>13.8</td>
<td>14.2</td>
</tr>
<tr>
<td>LO PR</td>
<td>112</td>
<td>120</td>
<td>128</td>
<td>136</td>
<td>144</td>
<td>152</td>
</tr>
<tr>
<td>HI PR</td>
<td>226</td>
<td>243</td>
<td>257</td>
<td>271</td>
<td>285</td>
<td>299</td>
</tr>
<tr>
<td>S/T</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>MBh</td>
<td>44.4</td>
<td>45.9</td>
<td>50.2</td>
<td>54.5</td>
<td>58.8</td>
<td>63.1</td>
</tr>
<tr>
<td>Delta T</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>KW</td>
<td>2.97</td>
<td>3.03</td>
<td>3.10</td>
<td>3.17</td>
<td>3.24</td>
<td>3.31</td>
</tr>
<tr>
<td>AMPS</td>
<td>12.3</td>
<td>12.6</td>
<td>13.0</td>
<td>13.4</td>
<td>13.8</td>
<td>14.2</td>
</tr>
<tr>
<td>LO PR</td>
<td>106</td>
<td>115</td>
<td>123</td>
<td>131</td>
<td>139</td>
<td>148</td>
</tr>
<tr>
<td>HI PR</td>
<td>226</td>
<td>243</td>
<td>257</td>
<td>271</td>
<td>285</td>
<td>299</td>
</tr>
<tr>
<td>S/T</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
<td>0.70</td>
</tr>
<tr>
<td>MBh</td>
<td>46.4</td>
<td>46.7</td>
<td>47.0</td>
<td>47.3</td>
<td>47.6</td>
<td>47.9</td>
</tr>
<tr>
<td>Delta T</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>KW</td>
<td>2.97</td>
<td>3.03</td>
<td>3.09</td>
<td>3.15</td>
<td>3.21</td>
<td>3.27</td>
</tr>
<tr>
<td>AMPS</td>
<td>12.3</td>
<td>12.6</td>
<td>13.0</td>
<td>13.4</td>
<td>13.8</td>
<td>14.2</td>
</tr>
<tr>
<td>LO PR</td>
<td>106</td>
<td>115</td>
<td>123</td>
<td>131</td>
<td>139</td>
<td>148</td>
</tr>
<tr>
<td>HI PR</td>
<td>226</td>
<td>243</td>
<td>257</td>
<td>271</td>
<td>285</td>
<td>299</td>
</tr>
</tbody>
</table>

NOTE: Shaded area is ACCA (TVA) conditions

* IDB: Entering Indoor Dry Bulb Temperature

High and low pressures are measured at the liquid and suction access fittings.
<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>67</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>80</td>
<td>1600</td>
<td>80</td>
<td>1600</td>
<td>80</td>
<td>1600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDB</td>
<td>Airflow</td>
<td>MBh</td>
<td>S/T</td>
<td>AMPS</td>
<td>HI PR</td>
<td>LO PR</td>
<td>MBh</td>
<td>S/T</td>
<td>AMPS</td>
<td>HI PR</td>
<td>LO PR</td>
<td>MBh</td>
<td>S/T</td>
<td>AMPS</td>
<td>HI PR</td>
</tr>
<tr>
<td>1600</td>
<td>MBh</td>
<td>47.2</td>
<td>54.6</td>
<td>40.3</td>
<td>53.1</td>
<td>37.9</td>
<td>50.6</td>
<td>39.8</td>
<td>47.8</td>
<td>39.2</td>
<td>47.8</td>
<td>38.3</td>
<td>47.8</td>
<td>37.8</td>
<td>47.8</td>
</tr>
<tr>
<td>80</td>
<td>S/T</td>
<td>0.95</td>
<td>0.8</td>
<td>0.75</td>
<td>0.54</td>
<td>0.95</td>
<td>0.75</td>
<td>0.54</td>
<td>0.95</td>
<td>0.75</td>
<td>0.54</td>
<td>0.95</td>
<td>0.75</td>
<td>0.54</td>
<td>0.95</td>
</tr>
<tr>
<td>Delta T</td>
<td>0.95</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>Delta T</td>
<td>0.95</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.9</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
</tr>
<tr>
<td>AMPS</td>
<td>52.5</td>
</tr>
<tr>
<td>HI PR</td>
<td>37.9</td>
</tr>
<tr>
<td>LO PR</td>
<td>50.6</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects AHRI rating conditions.

Outdoor Ambient Temperature

- **MBh:** 47.2, 54.6, 40.3, 53.1, 37.9, 50.6, 39.8, 47.8, 39.2, 47.8, 38.3, 47.8, 37.8, 47.8
- **S/T:** 0.95, 0.8, 0.75, 0.54, 0.95, 0.75, 0.54, 0.95, 0.75, 0.54, 0.95, 0.75, 0.54
- **AMPS:** 52.5
- **HI PR:** 37.9
- **LO PR:** 50.6

NOTE: Shaded area reflects AHRI rating conditions.
Model: GPC1460H41A*

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>56.3</td>
<td>56.4</td>
<td>64.0</td>
<td>55.0</td>
<td>57.0</td>
<td>62.5</td>
</tr>
<tr>
<td>S/T</td>
<td>0.71</td>
<td>0.60</td>
<td>0.41</td>
<td>0.74</td>
<td>0.62</td>
<td>0.43</td>
</tr>
<tr>
<td>Delta T</td>
<td>21</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>18</td>
<td>14</td>
</tr>
<tr>
<td>KW</td>
<td>3.70</td>
<td>3.78</td>
<td>3.91</td>
<td>4.00</td>
<td>4.09</td>
<td>4.23</td>
</tr>
<tr>
<td>AMPS</td>
<td>15.7</td>
<td>16.0</td>
<td>16.5</td>
<td>16.9</td>
<td>17.2</td>
<td>17.8</td>
</tr>
<tr>
<td>HI PR</td>
<td>238</td>
<td>256</td>
<td>271</td>
<td>267</td>
<td>288</td>
<td>304</td>
</tr>
<tr>
<td>LO PR</td>
<td>114</td>
<td>121</td>
<td>132</td>
<td>118</td>
<td>126</td>
<td>137</td>
</tr>
</tbody>
</table>

Cold and low pressures are measured at the liquid and suction access fittings.

* IDB: Entering Indoor Dry Bulb Temperature

NOTE: Shaded area is ACCA (TVA) conditions.
COOLING PERFORMANCE DATA

MODEL: GPC1460H41A*

EXPANDED PERFORMANCE DATA

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>Mbh</td>
<td>S/T</td>
<td>Delta T</td>
<td>KW</td>
<td>AMPS</td>
<td>HI PR</td>
</tr>
<tr>
<td>1800</td>
<td>65.0</td>
<td>61.8</td>
<td>66.1</td>
<td>65.3</td>
<td>5.36</td>
<td>7.04</td>
</tr>
<tr>
<td>5.96</td>
<td>3.98</td>
<td>4.01</td>
<td>4.11</td>
<td>4.25</td>
<td>4.39</td>
<td>4.53</td>
</tr>
<tr>
<td>4.81</td>
<td>4.95</td>
<td>5.09</td>
<td>5.23</td>
<td>5.37</td>
<td>5.51</td>
<td>5.65</td>
</tr>
<tr>
<td>58.0</td>
<td>59.1</td>
<td>60.6</td>
<td>61.7</td>
<td>62.8</td>
<td>63.9</td>
<td>65.0</td>
</tr>
<tr>
<td>5.66</td>
<td>5.77</td>
<td>6.04</td>
<td>6.44</td>
<td>5.52</td>
<td>5.63</td>
<td>5.89</td>
</tr>
<tr>
<td>52.4</td>
<td>53.5</td>
<td>54.6</td>
<td>59.7</td>
<td>48.6</td>
<td>49.5</td>
<td>51.9</td>
</tr>
<tr>
<td>5.59</td>
<td>5.89</td>
<td>6.29</td>
<td>6.68</td>
<td>5.24</td>
<td>5.45</td>
<td>5.89</td>
</tr>
<tr>
<td>1800</td>
<td>65.0</td>
<td>61.8</td>
<td>66.1</td>
<td>65.3</td>
<td>5.36</td>
<td>7.04</td>
</tr>
<tr>
<td>5.96</td>
<td>3.98</td>
<td>4.01</td>
<td>4.11</td>
<td>4.25</td>
<td>4.39</td>
<td>4.53</td>
</tr>
<tr>
<td>4.81</td>
<td>4.95</td>
<td>5.09</td>
<td>5.23</td>
<td>5.37</td>
<td>5.51</td>
<td>5.65</td>
</tr>
<tr>
<td>58.0</td>
<td>59.1</td>
<td>60.6</td>
<td>61.7</td>
<td>62.8</td>
<td>63.9</td>
<td>65.0</td>
</tr>
<tr>
<td>5.66</td>
<td>5.77</td>
<td>6.04</td>
<td>6.44</td>
<td>5.52</td>
<td>5.63</td>
<td>5.89</td>
</tr>
<tr>
<td>52.4</td>
<td>53.5</td>
<td>54.6</td>
<td>59.7</td>
<td>48.6</td>
<td>49.5</td>
<td>51.9</td>
</tr>
<tr>
<td>5.59</td>
<td>5.89</td>
<td>6.29</td>
<td>6.68</td>
<td>5.24</td>
<td>5.45</td>
<td>5.89</td>
</tr>
</tbody>
</table>

COOLING PERFORMANCE OPERATION

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>Mbh</td>
<td>S/T</td>
<td>Delta T</td>
<td>KW</td>
<td>AMPS</td>
<td>HI PR</td>
</tr>
<tr>
<td>1800</td>
<td>65.0</td>
<td>61.8</td>
<td>66.1</td>
<td>65.3</td>
<td>5.36</td>
<td>7.04</td>
</tr>
<tr>
<td>5.96</td>
<td>3.98</td>
<td>4.01</td>
<td>4.11</td>
<td>4.25</td>
<td>4.39</td>
<td>4.53</td>
</tr>
<tr>
<td>4.81</td>
<td>4.95</td>
<td>5.09</td>
<td>5.23</td>
<td>5.37</td>
<td>5.51</td>
<td>5.65</td>
</tr>
<tr>
<td>58.0</td>
<td>59.1</td>
<td>60.6</td>
<td>61.7</td>
<td>62.8</td>
<td>63.9</td>
<td>65.0</td>
</tr>
<tr>
<td>5.66</td>
<td>5.77</td>
<td>6.04</td>
<td>6.44</td>
<td>5.52</td>
<td>5.63</td>
<td>5.89</td>
</tr>
<tr>
<td>52.4</td>
<td>53.5</td>
<td>54.6</td>
<td>59.7</td>
<td>48.6</td>
<td>49.5</td>
<td>51.9</td>
</tr>
<tr>
<td>5.59</td>
<td>5.89</td>
<td>6.29</td>
<td>6.68</td>
<td>5.24</td>
<td>5.45</td>
<td>5.89</td>
</tr>
</tbody>
</table>

Note:

- Shaded area reflects AHRI rating conditions.
- IDB: Entering Indoor Dry Bulb Temperature
- KW = Total system power
- High and low pressures are measured at the liquid and suction access fittings.
- AMPS: Unit amps (comp. + evaporator + condenser fan motors)
All data based upon listed indoor dry bulb temperature. .00 inches external static pressure on coil of outdoor section. Indoor air cubic feet per minute (CFM) as listed in the Performance Data Sheets:

If conditions vary from this, results will change as follows:

1. As indoor dry bulb temperatures increase, a slight increase will occur in indoor air temperature drop (Delta T). Low and high side pressures and power will not change.
2. As indoor CFM decreases, a slight increase will occur in indoor temperature drop (Delta T). A slight decrease will occur in low and high side pressures and power.

A properly operating unit should be within plus or minus 3 degrees of the typical (\textit{Delta T}) value shown.
A properly operating unit should be within plus or minus 7 PSIG of the \textit{HI PR} shown.
A properly operating unit should be within plus or minus 3 PSIG of the \textit{LO PR} shown.
A properly operating unit should be within plus or minus 3 Amps of the typical value shown.
Wiring is subject to change. Always refer to the wiring diagram on the unit for the most up-to-date wiring.
GPC 14 SEER R-410A
5mm Package Air Conditioners

GPC1424H41AB	GPC1424H41B*	GPC1424H41C*	GPC1424H41D*
GPC1430H41AB	GPC1430H41B*	GPC1430H41C*	APC1424H41D*
GPC1436H41AB	GPC1436H41B*	GPC1436H41C*	*PC1430H41D*
GPC1442H41AB	GPC1442H41B*	GPC1442H41C*	*PC1436H41D*
GPC1448H41AB	GPC1448H41B*	GPC1448H41C*	*PC1442H41D*
GPC1460H41B*	GPC1460H41C*	GPC1460H41D*	*PC1448H41D*

PRODUCT DESIGN

*PC14 Package Cooling Units are designed for outdoor installations only in either residential or light commercial applications.

The connecting ductwork (Supply and Return) can be connected for either horizontal or vertical airflow. In the vertical application a matching Roof Curb is recommended.

A return air filter must be installed behind the return air grille(s) or provision must be made for a filter in an accessible location within the return air duct. The minimum filter area should not be less than those sizes listed in the Specification Section. Under no circumstances should the unit be operated without return air filters.

A 3/4" PVC pipe is provided for removal of condensate water from the indoor coil in order to provide proper condensate flow, a drain trap is supplied and shipped loose inside the unit for field installation. (Do not reduce the drain line size.)

Refrigerant flow control is achieved by use of restrictor orifices. *PC14 units use the FastTest Access Fitting System with a saddle that is either soldered to the suction and liquid lines or is fastened with a locking nut to the access fitting box (core) and then screwed into the saddle. Do not remove the core from the saddle until the refrigerant charge has been removed. Failure to do so could result in property damage or personal injury.

The single phase units use permanent split capacitor (PSC) design compressors. Starting components are therefore not required for these units. A low microfarad run capacitor assists the compressor to start and remains in the circuit during operation.

All *PC14 units have EEM indoor blower motors that are energized by a 24V signal from the thermostat and are constant torque motors with very low power consumption. The EEM features an integral control module.

Air for condensing (cooling cycle) is drawn through the outdoor coil by a propeller fan, and is discharged vertically out the top of the unit. The outdoor coil is designed for .0 static. No additional restriction (ductwork) shall be applied.

Conditioned air is drawn through the filter(s), field installed, across the coil and back into the conditioned space by the indoor blower.

GPC1424-60H41AB models use Copeland Scroll Compressors. There are a number of design characteristics which are different from the traditional reciprocating compressor.

- Due to their design Scroll Compressors are inherently more tolerant of liquid refrigerant. **NOTE:** Even though the compressor section of a Scroll compressor is more tolerant of liquid refrigerant, continued floodback or flooded start conditions may wash oil from the bearing surfaces causing premature bearing failure.
- Scroll Compressors use white oil which is compatible with 3GS oil which may be used if additional oil is required.
- Operating pressures and amp draws may differ from standard reciprocating compressors. This information may be found in the "Cooling Performance Data" section.

PRODUCT DESIGN

Location and Clearances

NOTE: To ensure proper condensate drainage, unit must be installed in a level position.

In installations where the unit is installed above ground level and not serviceable from the ground (Example: Roof Top installations), the installer must provide service platform for service person with rails or guards in accordance with local codes or ordinances or in their absence with the latest edition of the Uniform Mechanical Code Section 305.

NOTE: Unit can also use roof curb.

![Diagram of unit installation](image)

WARNING

TO PREVENT POSSIBLE PROPERTY DAMAGE, THE UNIT SHOULD REMAIN IN AN UPRIGHT POSITION DURING ALL RIGGING AND MOVING OPERATIONS. TO FACILITATE LIFTING AND MOVING IF A CRANE IS USED, PLACE THE UNIT IN AN ADEQUATE CABLE SLING.

Refer to Roof Curb Installation Instructions for proper curb installation. Curbing must be installed in compliance with the National Roofing Contractors Association Manual.

![Diagram of rooftop installation](image)

Outside Slab Installation - Horizontal (H)

Minimum clearances are required to avoid air recirculation and keep the unit operating at peak efficiency.

Rooftop Installation - Horizontal (H)
PACKAGE COOLING SPECIFICATIONS

GPC14[24-36]H41AB

<table>
<thead>
<tr>
<th>COOLING CAPACITY</th>
<th>SEER / EER</th>
<th>UNIT ELECTRICAL SPECIFICATION</th>
<th>MINIMUM CIRCUIT AMPACITY</th>
<th>MAXIMUM OVERCURRENT PROTECTION (1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLING CAPACITY, BTUH</td>
<td>24,600</td>
<td>14.5 / 12.1</td>
<td>208-230/1/60</td>
<td>30</td>
</tr>
<tr>
<td>SEER / EER</td>
<td>28,400</td>
<td>14.0 / 12.1</td>
<td>208-230/1/60</td>
<td>30</td>
</tr>
<tr>
<td>OPERATING</td>
<td>36,600</td>
<td>14.0 / 12.0</td>
<td>208-230/1/60</td>
<td>40</td>
</tr>
</tbody>
</table>

IMPORTANT:
While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters. Calculated external filter size based on air velocity of 300 ft/min. Unit specifications are subject to change without notice.

ALways refer to the units serial plate for the most up-to-date general and electrical information.

CALCULATED:
- **FILTER SIZE - SQ. FT.** 20 x 20 x 1
- **DRAIN SIZE (INCHES)** 3/4"
- **EXPANSION DEVICE** ORIFICE (0.057)
- **REFRIGERANT CHARGE - R-410A (Oz.)** 59
- **POWER SUPPLY CONDUIT KNOCKOUT SIZE (IN.)** 3/4, 1, 1-1/4
- **LOW VOLTAGE CONDUIT KNOCKOUT SIZE (IN.)** 1/2
- **SHIPPING WEIGHT LBS.** 290
- **OPERATING WEIGHT LBS.** 280

IMPORTANT:
While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
PACKAGE COOLING SPECIFICATIONS
GPC14[42-48]H41AB

<table>
<thead>
<tr>
<th>Specification</th>
<th>GPC1442H41AB</th>
<th>GPC1448H41AB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Capacity, BTUH</td>
<td>40,000</td>
<td>46,500</td>
</tr>
<tr>
<td>SEER / EER</td>
<td>14.2 / 12.0</td>
<td>14.5 / 12.0</td>
</tr>
<tr>
<td>Voltage (Nameplate)</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
</tr>
<tr>
<td>Amps (Total)</td>
<td>22.2</td>
<td>24.2</td>
</tr>
<tr>
<td>Minimum Circuit Ampacity</td>
<td>26.6</td>
<td>29.1</td>
</tr>
<tr>
<td>Maximum Overcurrent Protection (1)</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>Type</td>
<td>SCROLL</td>
<td>SCROLL</td>
</tr>
<tr>
<td>Rated Load Amps</td>
<td>17.9</td>
<td>19.9</td>
</tr>
<tr>
<td>Locked Rotor Amps</td>
<td>112</td>
<td>109</td>
</tr>
<tr>
<td>Horsepower</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>RPM</td>
<td>1075</td>
<td>1075</td>
</tr>
<tr>
<td>Full Load Amps</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Locked Rotor Amps</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Blade Diameter (Inches) / # of Blades</td>
<td>22 / 4</td>
<td>22 / 4</td>
</tr>
<tr>
<td>Face Area - Sq. Ft.</td>
<td>16.0</td>
<td>19.5</td>
</tr>
<tr>
<td>Number of Rows</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fins per Inch</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>Horsepower - No. of Speeds</td>
<td>1/2 - 5</td>
<td>3/4 - 5</td>
</tr>
<tr>
<td>Full Load Amps</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>Locked Rotor Amps</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Motor Speed Tap - Cooling</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>RPM</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>Diameter X Width (Inches)</td>
<td>10 x 8</td>
<td>10 x 8</td>
</tr>
<tr>
<td>Hi Efficiency Cooling CFM</td>
<td>1,300</td>
<td>1,600</td>
</tr>
<tr>
<td>5 Ton Nominal Cooling CFM</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Fan Only Cooling CFM</td>
<td>1,200</td>
<td>1,400</td>
</tr>
<tr>
<td>Max External Static Press ("w.c.)</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Face Area - Sq. Ft.</td>
<td>6.2</td>
<td>6.2</td>
</tr>
<tr>
<td>Number of Rows</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Fins per Inch</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>Filter Size - Sq. Ft.</td>
<td>(2) 20 x 20 x 1</td>
<td>(2) 20 x 20 x 1</td>
</tr>
<tr>
<td>Drain Size (Inches)</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td>Expansion Device</td>
<td>ORIFICE (0.072)</td>
<td>ORIFICE (0.078)</td>
</tr>
<tr>
<td>Refrigerant Charge R-410A (Oz.)</td>
<td>94</td>
<td>90</td>
</tr>
<tr>
<td>Power Supply Conduit Knockout Size (in.)</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
</tr>
<tr>
<td>Low Voltage Conduit Knockout Size (in.)</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Shipping Weight Lbs.</td>
<td>370</td>
<td>400</td>
</tr>
<tr>
<td>Operating Weight Lbs.</td>
<td>360</td>
<td>390</td>
</tr>
</tbody>
</table>

*(1) Maximum Overcurrent Protection Device: MUST use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.
* Calculated external filter size based on air velocity of 300 ft/min.
Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.
Unit specifications are subject to change without notice. ALWAYS refer to the units serial plate for the most up-to-date general and electrical information.
IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
Package Cooling Specifications

General Information

<table>
<thead>
<tr>
<th>GPC1424H41 B*</th>
<th>GPC1424H41 C*</th>
<th>GPC1430H41 B*/C*</th>
<th>GPC1436H41 B*/C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cooling Capacity, BTUH</td>
<td>24,600</td>
<td>24,600</td>
<td>28,400</td>
</tr>
<tr>
<td>SEER / EER</td>
<td>14.5 / 12.1</td>
<td>14.5 / 12.1</td>
<td>14.0 / 12.1</td>
</tr>
<tr>
<td>Voltage (Nameplate)</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
</tr>
<tr>
<td>Amps (Total)</td>
<td>16.1</td>
<td>10.3</td>
<td>15.76</td>
</tr>
<tr>
<td>Minimum Circuit Ampacity</td>
<td>19.5</td>
<td>12.2</td>
<td>19</td>
</tr>
<tr>
<td>Maximum Overcurrent Protection</td>
<td>30</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>Compressor Type</td>
<td>Scroll</td>
<td>Rotary</td>
<td>Scroll</td>
</tr>
<tr>
<td>Rated Load Amps</td>
<td>13.5</td>
<td>7.7</td>
<td>12.8</td>
</tr>
<tr>
<td>Locked Rotor Amps</td>
<td>58.3</td>
<td>37</td>
<td>64</td>
</tr>
<tr>
<td>Condenser Horsepower</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
</tr>
<tr>
<td>RPM</td>
<td>815</td>
<td>815</td>
<td>815</td>
</tr>
<tr>
<td>Full Load Amps</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>Locked Rotor Amps</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
</tr>
<tr>
<td>Condenser Fan Diameter (Inches) / # of Blades</td>
<td>22 / 2</td>
<td>22 / 2</td>
<td>22 / 2</td>
</tr>
<tr>
<td>Face Area - Sq. Ft.</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>Number of Rows</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Fins per Inch</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>Evaporator Horsepower - No. of Speeds</td>
<td>1/2 - 5</td>
<td>1/2 - 5</td>
<td>1/2 - 5</td>
</tr>
<tr>
<td>Full Load Amps</td>
<td>1.5</td>
<td>1.5</td>
<td>1.86</td>
</tr>
<tr>
<td>Locked Rotor Amps</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Motor Speed Tap - Cooling</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>RPM</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>Diameter X Width (Inches)</td>
<td>10 X 8</td>
<td>10 X 8</td>
<td>10 X 8</td>
</tr>
<tr>
<td>Hi Efficiency Cooling CFM</td>
<td>850</td>
<td>850</td>
<td>1,050</td>
</tr>
<tr>
<td>Fan Only Cooling CFM</td>
<td>800</td>
<td>800</td>
<td>950</td>
</tr>
<tr>
<td>Max External Static Press ("w.c.)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Evaporator Face Area - Sq. Ft.</td>
<td>4.66</td>
<td>4.66</td>
<td>5.25</td>
</tr>
<tr>
<td>Number of Rows</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Fins per Inch</td>
<td>16</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>General Information</td>
<td>Filter Size - Sq. Ft.</td>
<td>20 x 20 x 1</td>
<td>20 x 20 x 1</td>
</tr>
<tr>
<td>Drain Size (Inches)</td>
<td>3/4"</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td>Expansion Device</td>
<td>Orifice (0.057)</td>
<td>Orifice (0.057)</td>
<td>Orifice (0.062)</td>
</tr>
<tr>
<td>Refrigerant Charge</td>
<td>R-410A (Oz.)</td>
<td>59</td>
<td>60</td>
</tr>
<tr>
<td>Low Voltage Conduit Knockout Size (In.)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>Shipping Weight Lbs.</td>
<td>310</td>
<td>310</td>
<td>315</td>
</tr>
<tr>
<td>Operating Weight Lbs.</td>
<td>305</td>
<td>305</td>
<td>310</td>
</tr>
</tbody>
</table>

(1) Maximum Overcurrent Protection Device: MUST use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.

* Calculated external filter size based on air velocity of 300 ft/min.

Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.

Unit specifications are subject to change without notice. ALWAYS refer to the units serial plate for the most up-to-date general and electrical information.

IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
<table>
<thead>
<tr>
<th></th>
<th>GPC1442H41 B*/C*</th>
<th>GPC1448H41 B*/C*</th>
<th>GPC1460H41 B*/C*</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLING CAPACITY</td>
<td>40,000</td>
<td>46,500</td>
<td>57,500</td>
</tr>
<tr>
<td>SEER / EER</td>
<td>14.0 / 12.0</td>
<td>14.0 / 12.0</td>
<td>14.0 / 12.0</td>
</tr>
<tr>
<td>VOLTAGE (NAMEPLATE)</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
</tr>
<tr>
<td>AMPS (TOTAL)</td>
<td>22.2</td>
<td>24.2</td>
<td>30.7</td>
</tr>
<tr>
<td>MINIMUM CIRCUIT AMPACITY</td>
<td>26.6</td>
<td>29.1</td>
<td>37.3</td>
</tr>
<tr>
<td>MAXIMUM OVERCURRENT PROTECTION (1)</td>
<td>40</td>
<td>45</td>
<td>60</td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td>SCROLL</td>
<td>SCROLL</td>
<td>SCROLL</td>
</tr>
<tr>
<td>RATED LOAD AMPS</td>
<td>17.9</td>
<td>19.9</td>
<td>26.4</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>112</td>
<td>109</td>
<td>134</td>
</tr>
<tr>
<td>CONDENSER HORSEPOWER</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>FAN MOTOR RPM</td>
<td>1075</td>
<td>1075</td>
<td>1075</td>
</tr>
<tr>
<td>FULL LOAD AMPS</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>CONDENSER FAN BLADE DIAMETER (INCHES) / # OF BLADES</td>
<td>22 / 4</td>
<td>22 / 4</td>
<td>22 / 4</td>
</tr>
<tr>
<td>COIL FACE AREA - SQ. FT.</td>
<td>16.0</td>
<td>19.5</td>
<td>17</td>
</tr>
<tr>
<td>NUMBER OF ROWS</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>FINS PER INCH</td>
<td>28</td>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>EVAPORATOR HORSEPOWER - NO. OF SPEEDS</td>
<td>1/2 - 5</td>
<td>3/4 - 5</td>
<td>3/4 - 5</td>
</tr>
<tr>
<td>FULL LOAD AMPS</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MOTOR SPEED TAP - COOLING</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>RPM</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>EVAPORATOR BLOWER DIAMETER X WIDTH (INCHES)</td>
<td>10 x 8</td>
<td>10 x 8</td>
<td>11 x 8</td>
</tr>
<tr>
<td>HIGH EFFICIENCY COOLING CFM</td>
<td>1,300</td>
<td>1,600</td>
<td>1,700</td>
</tr>
<tr>
<td>5 TON NOMINAL COOLING CFM</td>
<td>NA</td>
<td>NA</td>
<td>1,800</td>
</tr>
<tr>
<td>FAN ONLY COOLING CFM</td>
<td>1,200</td>
<td>1,400</td>
<td>1,700</td>
</tr>
<tr>
<td>MAX EXTERNAL STATIC PRESS ("w.c.)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>EVAPORATOR COIL FACE AREA - SQ. FT.</td>
<td>6.2</td>
<td>6.2</td>
<td>7.0</td>
</tr>
<tr>
<td>NUMBER OF ROWS</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>FINS PER INCH</td>
<td>14</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>GENERAL FILTER SIZE - SQ. FT. * (2)</td>
<td>20 x 20 x 1</td>
<td>20 x 20 x 1</td>
<td>20 x 25 x 1</td>
</tr>
<tr>
<td>DRAIN SIZE (INCHES)</td>
<td>3/4</td>
<td>3/4</td>
<td>3/4</td>
</tr>
<tr>
<td>EXPANSION DEVICE</td>
<td>ORIFICE (0.072)</td>
<td>ORIFICE (0.076)</td>
<td>ORIFICE (0.086)</td>
</tr>
<tr>
<td>REFRIGERANT CHARGE R-410A (Oz.)</td>
<td>94</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>POWER SUPPLY CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
</tr>
<tr>
<td>LOW VOLTAGE CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>SHIPPING WEIGHT LBS.</td>
<td>360</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>OPERATING WEIGHT LBS.</td>
<td>355</td>
<td>370</td>
<td>375</td>
</tr>
</tbody>
</table>

(1) Maximum Overcurrent Protection Device: MUST use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.

* Calculated external filter size based on air velocity of 300 ft/min.

Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.

Unit specifications are subject to change without notice. ALWAYS refer to the units serial plate for the most up-to-date general and electrical information.

IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
PACKAGE COOLING SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>GPC1424H41D*</th>
<th>APC1424H41D*</th>
<th>PC1410H41D</th>
<th>PC1436H41D</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLING CAPACITY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COOLING CAPACITY, BTUH</td>
<td>24,600</td>
<td>24,600</td>
<td>28,400</td>
<td>36,600</td>
</tr>
<tr>
<td>SEER / EER</td>
<td>14.5 / 12.1</td>
<td>14.5 / 12.1</td>
<td>14.0 / 12.1</td>
<td>14.0 / 12.0</td>
</tr>
<tr>
<td>UNIT ELECTRICAL SPECIFICATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT VOLTAGE (NAMEPLATE)</td>
<td>208-230V/60</td>
<td>208-230V/60</td>
<td>208-230V/60</td>
<td>208-230V/60</td>
</tr>
<tr>
<td>AMPS (TOTAL)</td>
<td>12.6</td>
<td>18.4</td>
<td>17.7</td>
<td>22</td>
</tr>
<tr>
<td>MINIMUM CIRCUIT AMPACITY</td>
<td>15</td>
<td>22</td>
<td>21</td>
<td>26</td>
</tr>
<tr>
<td>MAXIMUM OVERCURRENT PROTECTION (1)</td>
<td>20</td>
<td>35</td>
<td>30</td>
<td>40</td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TYPE</td>
<td>ROTARY</td>
<td>SCROLL</td>
<td>SCROLL</td>
<td>SCROLL</td>
</tr>
<tr>
<td>RATED LOAD AMPS</td>
<td>7.7</td>
<td>13.5</td>
<td>12.8</td>
<td>16.7</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>37</td>
<td>58.3</td>
<td>64</td>
<td>79</td>
</tr>
<tr>
<td>CONDENSER FAN MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORSEPOWER</td>
<td>1/6</td>
<td>1/6</td>
<td>1/6</td>
<td>1/4</td>
</tr>
<tr>
<td>RPM</td>
<td>815</td>
<td>815</td>
<td>815</td>
<td>830</td>
</tr>
<tr>
<td>FULL LOAD AMPS</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>CONDENSER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLADE DIAMETER (INCHES) / # OF BLADES</td>
<td>22 / 2</td>
<td>22 / 2</td>
<td>22 / 2</td>
<td>22 / 3</td>
</tr>
<tr>
<td>CONDENSER COIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACE AREA - SQ. FT.</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>NUMBER OF ROWS</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>FINS PER INCH</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>EVAPORATOR BLOWER MOTOR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HORSEPOWER - NO. OF SPEEDS</td>
<td>1/2 - 5</td>
<td>1/2 - 5</td>
<td>1/2 - 5</td>
<td>1/2 - 5</td>
</tr>
<tr>
<td>FULL LOAD AMPS</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
<td>3.8</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>MOTOR SPEED TAP - COOLING</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>RPM</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>EVAPORATOR BLOWER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DIAMETER X WIDTH (INCHES)</td>
<td>10 X 8</td>
<td>10 X 8</td>
<td>10 X 8</td>
<td>10 X 8</td>
</tr>
<tr>
<td>HI EFFICIENCY COOLING CFM</td>
<td>850</td>
<td>850</td>
<td>1,050</td>
<td>1,200</td>
</tr>
<tr>
<td>FAN ONLY COOLING CFM</td>
<td>800</td>
<td>800</td>
<td>950</td>
<td>1,100</td>
</tr>
<tr>
<td>MAX EXTERNAL STATIC PRESS (*w.c.)</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
</tr>
<tr>
<td>EVAPORATOR COIL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FACE AREA - SQ. FT.</td>
<td>4.66</td>
<td>4.66</td>
<td>5.25</td>
<td>5.25</td>
</tr>
<tr>
<td>NUMBER OF ROWS</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>FINS PER INCH</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>14</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FILTER SIZE - SQ. FT. *</td>
<td>20 x 20 x 1</td>
<td>20 x 20 x 1</td>
<td>20 x 25 x 1</td>
<td>25 x 25 x 1</td>
</tr>
<tr>
<td>DRAIN SIZE (INCHES)</td>
<td>3/4"</td>
<td>3/4"</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td>EXPANSION DEVICE</td>
<td>ORIFICE (0.057)</td>
<td>ORIFICE (0.057)</td>
<td>ORIFICE (0.062)</td>
<td>ORIFICE (0.068)</td>
</tr>
<tr>
<td>REFRIGERANT CHARGE: R-410A (Oz.)</td>
<td>60</td>
<td>60</td>
<td>61</td>
<td>65</td>
</tr>
<tr>
<td>POWER SUPPLY CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
</tr>
<tr>
<td>LOW VOLTAGE CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>SHIPPING WEIGHT LBS.</td>
<td>310</td>
<td>310</td>
<td>315</td>
<td>330</td>
</tr>
<tr>
<td>OPERATING WEIGHT LBS.</td>
<td>305</td>
<td>305</td>
<td>310</td>
<td>315</td>
</tr>
</tbody>
</table>

(1) Maximum Overcurrent Protection Device: **MUST** use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.

* Calculated external filter size based on air velocity of 300 ft/min.

Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.

Unit specifications are subject to change without notice. **ALWAYS** refer to the units serial plate for the most up-to-date general and electrical information.

IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
PACKAGE COOLING SPECIFICATIONS

<table>
<thead>
<tr>
<th></th>
<th>PC1442H41D</th>
<th>PC1448H41D</th>
<th>PC1460H41D</th>
</tr>
</thead>
<tbody>
<tr>
<td>COOLING CAPACITY, BTUH</td>
<td>40,000</td>
<td>46,500</td>
<td>57,500</td>
</tr>
<tr>
<td>SEER / EER</td>
<td>14.0 / 12.0</td>
<td>14.0 / 12.0</td>
<td>14.0 / 12.0</td>
</tr>
<tr>
<td>VOLTAGE (NAMEPLATE)</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
<td>208-230/1/60</td>
</tr>
<tr>
<td>AMPS (TOTAL)</td>
<td>23.1</td>
<td>26.7</td>
<td>33.2</td>
</tr>
<tr>
<td>MINIMUM CIRCUIT AMPACITY</td>
<td>28</td>
<td>32</td>
<td>40.0</td>
</tr>
<tr>
<td>MAXIMUM OVERCURRENT PROTECTION (1)</td>
<td>45</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>COMPRESSOR</td>
<td>SCROLL</td>
<td>SCROLL</td>
<td>SCROLL</td>
</tr>
<tr>
<td>RATED LOAD AMPS</td>
<td>17.9</td>
<td>19.9</td>
<td>26.4</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>112</td>
<td>109</td>
<td>134</td>
</tr>
<tr>
<td>CONDENSER FAN</td>
<td>1/4</td>
<td>1/4</td>
<td>1/4</td>
</tr>
<tr>
<td>HORSEPOWER</td>
<td>1075</td>
<td>1075</td>
<td>1075</td>
</tr>
<tr>
<td>RPM</td>
<td>1075</td>
<td>1075</td>
<td>1075</td>
</tr>
<tr>
<td>FULL LOAD AMPS</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>2.9</td>
<td>2.9</td>
<td>2.9</td>
</tr>
<tr>
<td>EVAPORATOR</td>
<td>1/2 - 5</td>
<td>3/4 - 5</td>
<td>3/4 - 5</td>
</tr>
<tr>
<td>FULL LOAD AMPS</td>
<td>3.8</td>
<td>5.4</td>
<td>5.4</td>
</tr>
<tr>
<td>LOCKED ROTOR AMPS</td>
<td>NA</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>BLOWER</td>
<td>T2</td>
<td>T2</td>
<td>T2</td>
</tr>
<tr>
<td>HI EFFICIENCY COOLING CFM</td>
<td>1,300</td>
<td>1,600</td>
<td>1,700</td>
</tr>
<tr>
<td>5 TON NOMINAL COOLING CFM</td>
<td>NA</td>
<td>NA</td>
<td>1,800</td>
</tr>
<tr>
<td>FAN ONLY COOLING CFM</td>
<td>1,200</td>
<td>1,400</td>
<td>1,700</td>
</tr>
<tr>
<td>MAX EXTERNAL STATIC PRESS (w.c.)</td>
<td>0.5 / 0.8**</td>
<td>0.5 / 0.8**</td>
<td>0.5 / 0.8**</td>
</tr>
<tr>
<td>GENERAL INFORMATION</td>
<td>4 / 20 x 20 x 1</td>
<td>4 / 20 x 20 x 1</td>
<td>4 / 20 x 25 x 1</td>
</tr>
<tr>
<td>FILTER SIZE - SQ. FT.</td>
<td>3/4"</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td>DRAIN SIZE (INCHES)</td>
<td>3/4"</td>
<td>3/4"</td>
<td>3/4"</td>
</tr>
<tr>
<td>EXPANSION DEVICE</td>
<td>ORIFICE (0.072)</td>
<td>ORIFICE (0.076)</td>
<td>ORIFICE (0.086)</td>
</tr>
<tr>
<td>REFRIGERANT CHARGE R-410A (Oz.)</td>
<td>94</td>
<td>90</td>
<td>110</td>
</tr>
<tr>
<td>POWER SUPPLY CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
<td>3/4, 1, 1-1/4</td>
</tr>
<tr>
<td>LOW VOLTAGE CONDUIT KNOCKOUT SIZE (IN.)</td>
<td>1/2</td>
<td>1/2</td>
<td>1/2</td>
</tr>
<tr>
<td>SHIPPING WEIGHT LBS.</td>
<td>360</td>
<td>375</td>
<td>380</td>
</tr>
<tr>
<td>OPERATING WEIGHT LBS.</td>
<td>355</td>
<td>370</td>
<td>375</td>
</tr>
</tbody>
</table>

** When using a 20kW electric heater, unit is rated for 0.5 E.S.P. For all other electric heat sizes as well as units with no heater installed, the max E.S.P is 0.8.

1 Maximum Overcurrent Protection Device: MUST use Time Delay Fuse or HACR type Circuit Breaker of the same size as noted.

Wire size should be determined in accordance with National Electrical Codes. Extensive wire runs will require larger wire sizes.

Unit specifications are subject to change without notice. ALWAYS refer to the units serial plate for the most up-to-date general and electrical information.

IMPORTANT: While this data is presented as a guide, it is important to electrically connect the unit and properly size wires and fuses/circuit breakers in accordance with the National Electrical Code and/or all local codes. Data shown is w/o electric heaters.
Expanded Performance Data

Cooling Operation

<table>
<thead>
<tr>
<th>Entering Indoor Wet Bulb Temperature</th>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model: PC1424H41*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coiling Performance Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Design Subcooling: 9 ± 2 F @ the liquid access fitting connection AHRI 95 test conditions. Design Superheat 5 ± 2 F @ the compressor or suction access fitting connection.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Performance Data

95°F Entering Indoor Wet Bulb Temperature

- **MBh:** 24.1, 25.0, 27.4, 23.5, 24.4, 26.7, 22.5, 23.8, 26.1, 22.1, 23.2, 25.6, 21.3, 22.1, 24.2
- **S/T:** 0.74, 0.62, 0.43, 0.79, 0.66, 0.46, 0.82, 0.68, 0.47, 0.85, 0.71, 0.49, 0.85, 0.71, 0.49
- **Delta T:** 17, 15, 11, 17, 15, 11, 18, 15, 12, 17, 15, 11
- **KW:** 1.57, 1.60, 1.66, 1.70, 1.73, 1.79, 1.81, 1.85, 1.91, 1.95, 2.02, 1.99, 2.04, 2.11
- **AMPS:** 6.6, 6.8, 7.0, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.4, 8.7, 8.7, 8.9, 9.2, 9.4
- **HI PR:** 233, 251, 265, 262, 282, 301, 321, 339, 365, 386, 382, 411, 434, 422, 454, 479
- **LO PR:** 111, 118, 129, 127, 130, 137, 128, 137, 143, 135, 143, 156, 139, 148, 162

70°F Entering Indoor Wet Bulb Temperature

- **S/T:** 0.71, 0.59, 0.41, 0.76, 0.63, 0.44, 0.78, 0.65, 0.45, 0.81, 0.67, 0.47, 0.81, 0.68, 0.47
- **Delta T:** 18, 16, 12, 18, 16, 12, 18, 16, 12, 16, 16, 12
- **KW:** 1.56, 1.59, 1.64, 1.68, 1.72, 1.78, 1.79, 1.83, 1.90, 1.97, 2.02, 2.09, 2.05, 2.09, 2.17
- **AMPS:** 6.6, 6.7, 6.9, 7.1, 7.3, 7.5, 7.7, 7.9, 8.1, 8.4, 8.6, 8.8, 8.9, 9.1, 9.3
- **HI PR:** 231, 249, 263, 259, 279, 295, 317, 336, 361, 378, 409, 418, 449, 474, 487
- **LO PR:** 110, 117, 128, 126, 129, 143, 121, 137, 148, 133, 142, 155, 138, 147, 160

75°F Entering Indoor Wet Bulb Temperature

- **S/T:** 0.68, 0.57, 0.40, 0.71, 0.59, 0.41, 0.73, 0.61, 0.42, 0.75, 0.63, 0.43, 0.78, 0.65, 0.45
- **Delta T:** 18, 16, 12, 18, 16, 12, 18, 16, 12, 16, 16, 12
- **KW:** 1.52, 1.55, 1.60, 1.64, 1.68, 1.73, 1.75, 1.79, 1.85, 1.84, 1.88, 1.95, 1.92, 1.97, 2.03
- **AMPS:** 6.4, 6.6, 6.7, 6.9, 7.1, 7.3, 7.5, 7.6, 8.1, 8.4, 8.6, 8.9, 8.9, 9.1, 9.4
- **HI PR:** 224, 241, 255, 252, 271, 286, 308, 326, 351, 367, 394, 411, 434, 452, 479
- **LO PR:** 107, 114, 128, 113, 120, 131, 121, 135, 143, 129, 137, 150, 134, 142, 155

Additional Details

- High and low pressures are measured at the liquid and suction access fittings.
- *IDB: Entering Indoor Dry Bulb Temperature*
- **NOTE:** Shaded area is ACCA (TVA) conditions.
COOLING PERFORMANCE DATA

Model: *PC1424H41C/D*

Design Subcooling: 9 ± 2°F @ the liquid access fitting connection

AHRI 95 test conditions.

Design Superheat: 5 ± 2°F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>MBh</td>
<td>S/T</td>
<td>DELTA T</td>
<td>KW</td>
<td>HI PR</td>
<td>LO PR</td>
</tr>
<tr>
<td>955°F</td>
<td>25.0</td>
<td>0.93</td>
<td>22 11</td>
<td>1.60</td>
<td>6.8</td>
<td>238</td>
</tr>
<tr>
<td>80°F</td>
<td>24.2</td>
<td>0.88</td>
<td>23 22</td>
<td>1.58</td>
<td>6.7</td>
<td>236</td>
</tr>
<tr>
<td>74°F</td>
<td>22.4</td>
<td>0.85</td>
<td>24 24</td>
<td>1.54</td>
<td>6.5</td>
<td>229</td>
</tr>
<tr>
<td>68°F</td>
<td>20.8</td>
<td>0.80</td>
<td>24 24</td>
<td>1.50</td>
<td>6.1</td>
<td>219</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects AHRI rating conditions

High and low pressures are measured at the liquid and suction access fittings.

AMPS: Unit amps (comp. + evaporator + condenser fan motors)
EXPANDED PERFORMANCE DATA

COOLING OPERATION

- **Design Subcooling**: 10 ± 2 °F @ the liquid access fitting connection ARI 95 test conditions.
- **Design Superheat**: 10 ± 2 °F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>IDB Airflow</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>60 Mbtu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbh</td>
<td>27.8</td>
<td>28.8</td>
<td>31.6</td>
<td>27.2</td>
<td>28.2</td>
<td>30.9</td>
</tr>
<tr>
<td>S/T</td>
<td>0.76</td>
<td>0.63</td>
<td>0.44</td>
<td>0.79</td>
<td>0.66</td>
<td>0.46</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>14</td>
<td>11</td>
<td>17</td>
<td>14</td>
<td>11</td>
</tr>
<tr>
<td>90 Mbtu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mbh</td>
<td>27.0</td>
<td>28.0</td>
<td>30.7</td>
<td>26.4</td>
<td>27.4</td>
<td>30.0</td>
</tr>
<tr>
<td>S/T</td>
<td>0.73</td>
<td>0.61</td>
<td>0.42</td>
<td>0.75</td>
<td>0.63</td>
<td>0.43</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>17</td>
<td>15</td>
<td>11</td>
</tr>
</tbody>
</table>

Entering Indoor Wet Bulb Temperature

<table>
<thead>
<tr>
<th>70 Mbtu</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mbh</td>
<td>24.9</td>
<td>25.8</td>
<td>28.3</td>
<td>24.4</td>
<td>25.2</td>
</tr>
<tr>
<td>S/T</td>
<td>0.70</td>
<td>0.58</td>
<td>0.40</td>
<td>0.72</td>
<td>0.61</td>
</tr>
<tr>
<td>Delta T</td>
<td>17</td>
<td>15</td>
<td>11</td>
<td>18</td>
<td>15</td>
</tr>
</tbody>
</table>

920 Mbtu

Mbh	27.5	30.6	32.9	28.6	27.6	29.9	26.2	27.0	29.2	28.3	29.3	31.5	25.0	25.8	27.9	29.9	23.2	23.9	25.8	27.7
S/T	0.82	0.74	0.56	0.85	0.76	0.58	0.88	0.78	0.60	0.89	0.70	0.61	0.94	0.84	0.64	0.95	0.85	0.64		
Delta T	15	14	10	19	15	10	19	15	10	19	15	10	19	15	10	18	16	14		

High and low pressures are measured at the liquid and suction access fittings.

IDB: Entering Indoor Dry Bulb Temperature
NOTE: Shaded area is ACCA (TVA) conditions
MODEL: *PC1430H41*

EXPANDED PERFORMANCE DATA

COOLING OPERATION

Design Subcooling, 10 ± 2 °F @ the liquid access fitting connection ARI 95 test conditions. Design Superheat 10 ± 2 °F @ the compressor suction access fitting connection.

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>59</td>
<td>63</td>
</tr>
<tr>
<td>S/T</td>
<td>0.99</td>
<td>0.98</td>
<td>0.95</td>
<td>0.92</td>
<td>0.90</td>
<td>0.89</td>
</tr>
<tr>
<td>AMPS</td>
<td>7.5</td>
<td>7.6</td>
<td>7.7</td>
<td>7.8</td>
<td>7.9</td>
<td>8.0</td>
</tr>
<tr>
<td>HI PR</td>
<td>234</td>
<td>244</td>
<td>255</td>
<td>266</td>
<td>277</td>
<td>288</td>
</tr>
<tr>
<td>LO PR</td>
<td>109</td>
<td>119</td>
<td>129</td>
<td>139</td>
<td>149</td>
<td>159</td>
</tr>
</tbody>
</table>

| NOTE: Shaded area reflects AHRI rating conditions |

*NOTE: Shaded area is AHRI Rating Conditions IDB: Entering Indoor Dry Bulb Temperature KW = Total system power High and low pressures are measured at the liquid and suction access fittings. AMPS: Unit amps (comp.+ evaporator + condenser fan motors)
Expanded Performance Data

Cooling Operation

Model: *PC1436H41

Design Subcooling, 10 ±2 °F @ the liquid access fitting connection ARI 95 test conditions. Design Superheat 9 ±2 °F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Temperature</td>
<td>MBh</td>
<td>S/T</td>
<td>Delta T</td>
<td>KW</td>
<td>AMPS</td>
<td>HI PR</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>59</td>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>70</td>
<td>1200</td>
<td>1349</td>
<td>1052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

High and Low Pressures

High and low pressures are measured at the liquid and suction access fittings.

NOTE

- Shaded area is ACCA (TVA) conditions.
- *(IDB): Entering Indoor Dry Bulb Temperature*

* High and low pressures are measured at the liquid and suction access fittings.

Expanded Performance Data

Cooling Operation

Model: *PC1436H41

Design Subcooling, 10 ±2 °F @ the liquid access fitting connection ARI 95 test conditions. Design Superheat 9 ±2 °F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Temperature</td>
<td>MBh</td>
<td>S/T</td>
<td>Delta T</td>
<td>KW</td>
<td>AMPS</td>
<td>HI PR</td>
</tr>
<tr>
<td>----------------------------</td>
<td>----</td>
<td>----</td>
<td>---------</td>
<td>----</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>59</td>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>70</td>
<td>1200</td>
<td>1349</td>
<td>1052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
COOLING PERFORMANCE DATA

MODEL: *PC1436H41AB*/B*/C*/D

42

MODEL: *PC1436H41 EXPANDED PERFORMANCE DATA COOLING OPERATION**

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>MBh</td>
<td>S/T</td>
<td>Delta T</td>
<td>HI PR</td>
<td>LO PR</td>
<td>AMPS</td>
</tr>
<tr>
<td>59</td>
<td>63</td>
<td>67</td>
<td>71</td>
<td>59</td>
<td>63</td>
<td>67</td>
</tr>
<tr>
<td>Outdoor Ambient Temperature</td>
<td>1349</td>
<td>1200</td>
<td>1052</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MBh</td>
<td>36.1</td>
<td>35.8</td>
<td>35.1</td>
<td>35.2</td>
<td>35.2</td>
<td>35.4</td>
</tr>
<tr>
<td>S/T</td>
<td>0.95</td>
<td>0.98</td>
<td>0.91</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Delta T</td>
<td>27.5</td>
<td>24.6</td>
<td>25.0</td>
<td>24.9</td>
<td>24.9</td>
<td>24.9</td>
</tr>
<tr>
<td>HI PR</td>
<td>10.7</td>
<td>10.9</td>
<td>10.6</td>
<td>10.8</td>
<td>10.8</td>
<td>10.9</td>
</tr>
<tr>
<td>LO PR</td>
<td>110</td>
<td>117</td>
<td>109</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>AMPS</td>
<td>10.5</td>
<td>10.7</td>
<td>10.6</td>
<td>10.7</td>
<td>10.7</td>
<td>10.8</td>
</tr>
<tr>
<td>KW</td>
<td>2.37</td>
<td>2.42</td>
<td>2.53</td>
<td>2.47</td>
<td>2.47</td>
<td>2.47</td>
</tr>
<tr>
<td>LO PR</td>
<td>110</td>
<td>117</td>
<td>109</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
<tr>
<td>MBh</td>
<td>35.1</td>
<td>35.8</td>
<td>35.1</td>
<td>35.2</td>
<td>35.2</td>
<td>35.4</td>
</tr>
<tr>
<td>S/T</td>
<td>0.95</td>
<td>0.98</td>
<td>0.91</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>Delta T</td>
<td>27.5</td>
<td>24.6</td>
<td>25.0</td>
<td>24.9</td>
<td>24.9</td>
<td>24.9</td>
</tr>
<tr>
<td>HI PR</td>
<td>10.7</td>
<td>10.9</td>
<td>10.6</td>
<td>10.8</td>
<td>10.8</td>
<td>10.9</td>
</tr>
<tr>
<td>LO PR</td>
<td>110</td>
<td>117</td>
<td>109</td>
<td>116</td>
<td>116</td>
<td>116</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects AHRI rating conditions

High and low pressures are measured at the liquid and suction access fittings.

AMPS: Unit amps (comp. + evaporator + condenser fan motors)
Expanding Performance Data

Cooling Operation

Design Subcooling: 8 ± 2°F @ the liquid access fitting connection AHRI 95 test conditions. Design Superheat 8 ± 2°F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>IDB* Airflow</th>
<th>M&Bh</th>
<th>S/T</th>
<th>Delta T</th>
<th>Kw</th>
<th>AmPS</th>
<th>Hi PR</th>
<th>S/T</th>
<th>Delta T</th>
<th>Kw</th>
<th>AmPS</th>
<th>Hi PR</th>
</tr>
</thead>
<tbody>
<tr>
<td>65</td>
<td></td>
</tr>
<tr>
<td>75</td>
<td></td>
</tr>
<tr>
<td>85</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td></td>
</tr>
<tr>
<td>135</td>
<td></td>
</tr>
<tr>
<td>145</td>
<td></td>
</tr>
<tr>
<td>155</td>
<td></td>
</tr>
</tbody>
</table>

Entering Indoor Wet Bulb Temperature

<table>
<thead>
<tr>
<th>LO PR</th>
<th>108</th>
<th>115</th>
<th>122</th>
<th>129</th>
<th>136</th>
<th>143</th>
<th>150</th>
<th>157</th>
<th>164</th>
<th>171</th>
<th>178</th>
<th>185</th>
<th>192</th>
<th>199</th>
<th>206</th>
</tr>
</thead>
<tbody>
<tr>
<td>161</td>
<td>35.6</td>
<td>36.9</td>
<td>40.4</td>
<td>38.1</td>
<td>39.4</td>
<td>42.3</td>
<td>44.3</td>
<td>51.2</td>
<td>56.7</td>
<td>50.9</td>
<td>53.4</td>
<td>55.9</td>
<td>61.6</td>
<td>63.8</td>
<td>66.0</td>
</tr>
<tr>
<td>146</td>
<td>35.9</td>
<td>37.1</td>
<td>40.6</td>
<td>38.3</td>
<td>39.6</td>
<td>42.5</td>
<td>44.5</td>
<td>51.4</td>
<td>56.9</td>
<td>51.1</td>
<td>53.6</td>
<td>56.1</td>
<td>61.8</td>
<td>64.0</td>
<td>66.2</td>
</tr>
<tr>
<td>131</td>
<td>35.8</td>
<td>37.2</td>
<td>40.7</td>
<td>38.5</td>
<td>39.8</td>
<td>42.7</td>
<td>44.7</td>
<td>51.6</td>
<td>57.1</td>
<td>51.3</td>
<td>53.8</td>
<td>56.3</td>
<td>62.0</td>
<td>64.2</td>
<td>66.4</td>
</tr>
<tr>
<td>116</td>
<td>35.7</td>
<td>37.1</td>
<td>40.6</td>
<td>38.3</td>
<td>39.7</td>
<td>42.6</td>
<td>44.6</td>
<td>51.5</td>
<td>57.0</td>
<td>51.2</td>
<td>53.7</td>
<td>56.2</td>
<td>61.9</td>
<td>64.1</td>
<td>66.3</td>
</tr>
<tr>
<td>101</td>
<td>35.6</td>
<td>36.9</td>
<td>40.4</td>
<td>38.1</td>
<td>39.4</td>
<td>42.3</td>
<td>44.3</td>
<td>51.2</td>
<td>56.7</td>
<td>50.9</td>
<td>53.4</td>
<td>55.9</td>
<td>61.6</td>
<td>63.8</td>
<td>66.0</td>
</tr>
<tr>
<td>96</td>
<td>35.5</td>
<td>36.8</td>
<td>40.3</td>
<td>38.0</td>
<td>39.3</td>
<td>42.2</td>
<td>44.2</td>
<td>51.1</td>
<td>56.6</td>
<td>50.8</td>
<td>53.3</td>
<td>55.8</td>
<td>61.5</td>
<td>63.7</td>
<td>65.9</td>
</tr>
<tr>
<td>81</td>
<td>35.4</td>
<td>36.7</td>
<td>40.2</td>
<td>37.9</td>
<td>39.2</td>
<td>42.1</td>
<td>44.1</td>
<td>51.0</td>
<td>56.5</td>
<td>50.7</td>
<td>53.2</td>
<td>55.7</td>
<td>61.4</td>
<td>63.6</td>
<td>65.8</td>
</tr>
<tr>
<td>66</td>
<td>35.3</td>
<td>36.6</td>
<td>40.1</td>
<td>37.8</td>
<td>39.1</td>
<td>42.0</td>
<td>44.0</td>
<td>50.9</td>
<td>56.4</td>
<td>50.6</td>
<td>53.1</td>
<td>55.6</td>
<td>61.3</td>
<td>63.5</td>
<td>65.7</td>
</tr>
<tr>
<td>51</td>
<td>35.2</td>
<td>36.5</td>
<td>39.9</td>
<td>37.6</td>
<td>38.9</td>
<td>41.8</td>
<td>43.8</td>
<td>49.8</td>
<td>55.3</td>
<td>50.5</td>
<td>52.9</td>
<td>55.4</td>
<td>61.1</td>
<td>63.3</td>
<td>65.5</td>
</tr>
<tr>
<td>36</td>
<td>35.1</td>
<td>36.4</td>
<td>39.8</td>
<td>37.5</td>
<td>38.8</td>
<td>41.7</td>
<td>43.7</td>
<td>49.7</td>
<td>55.2</td>
<td>50.4</td>
<td>52.8</td>
<td>55.3</td>
<td>61.0</td>
<td>63.2</td>
<td>65.4</td>
</tr>
</tbody>
</table>

LO PR

<table>
<thead>
<tr>
<th>1461</th>
<th>108</th>
<th>115</th>
<th>122</th>
<th>129</th>
<th>136</th>
<th>143</th>
<th>150</th>
<th>157</th>
<th>164</th>
<th>171</th>
<th>178</th>
<th>185</th>
<th>192</th>
<th>199</th>
<th>206</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>108</td>
<td>115</td>
<td>122</td>
<td>129</td>
<td>136</td>
<td>143</td>
<td>150</td>
<td>157</td>
<td>164</td>
<td>171</td>
<td>178</td>
<td>185</td>
<td>192</td>
<td>199</td>
<td>206</td>
</tr>
<tr>
<td>131</td>
<td>108</td>
<td>115</td>
<td>122</td>
<td>129</td>
<td>136</td>
<td>143</td>
<td>150</td>
<td>157</td>
<td>164</td>
<td>171</td>
<td>178</td>
<td>185</td>
<td>192</td>
<td>199</td>
<td>206</td>
</tr>
<tr>
<td>146</td>
<td>108</td>
<td>115</td>
<td>122</td>
<td>129</td>
<td>136</td>
<td>143</td>
<td>150</td>
<td>157</td>
<td>164</td>
<td>171</td>
<td>178</td>
<td>185</td>
<td>192</td>
<td>199</td>
<td>206</td>
</tr>
<tr>
<td>161</td>
<td>108</td>
<td>115</td>
<td>122</td>
<td>129</td>
<td>136</td>
<td>143</td>
<td>150</td>
<td>157</td>
<td>164</td>
<td>171</td>
<td>178</td>
<td>185</td>
<td>192</td>
<td>199</td>
<td>206</td>
</tr>
</tbody>
</table>

High and Low Pressures

High and low pressures are measured at the liquid and suction access fittings.

* IDB: Entering Indoor Dry Bulb Temperature

NOTE: Shaded area is ACCA (TVA) conditions.
EXPANDED PERFORMANCE DATA

COOLING OPERATION

Design Subcooling, 8 ± 2 °F @ the liquid access fitting connection. Design Superheat 8 ± 2 °F @ the compressor suction access fitting connection.

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>Mh</td>
<td>S/T</td>
<td>Delta T</td>
<td>AMPS</td>
<td>HI PR</td>
<td>LO PR</td>
</tr>
<tr>
<td>59</td>
<td>41.1 42.0 44.8 47.9 49.0</td>
<td>0.94 0.88 0.71 0.53</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>67</td>
<td>41.0 41.0 43.8 46.8 48.8</td>
<td>40.2 40.0 42.8 45.7 48.2</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>71</td>
<td>41.0 41.0 43.8 46.8 48.8</td>
<td>38.2 39.0 41.7 44.6 47.2</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>59</td>
<td>39.2 40.0 42.8 45.7 48.2</td>
<td>36.3 37.1 39.6 42.4 45.0</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>67</td>
<td>39.2 40.0 42.8 45.7 48.2</td>
<td>33.6 34.4 36.7 39.2 41.8</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>71</td>
<td>39.2 40.0 42.8 45.7 48.2</td>
<td>31.9 33.6 36.7 39.2 41.8</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
</tbody>
</table>

- **Mh**: Unit amps (comp.+ evaporator + condenser fan motors)
- **S/T**: Unit amps (comp.+ evaporator + condenser fan motors)
- **Delta T**: Unit amps (comp.+ evaporator + condenser fan motors)
- **AMPS**: Unit amps (comp.+ evaporator + condenser fan motors)
- **HI PR**: High pressure
- **LO PR**: Low pressure

NOTE
- Shaded areas reflect AHRI rating conditions.
- High and low pressures are measured at the liquid and suction access fittings.
- Design Subcooling, 8 ± 2 °F @ the liquid access fitting connection. Design Superheat 8 ± 2 °F @ the compressor suction access fitting connection.

Table

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>Mh</td>
<td>S/T</td>
<td>Delta T</td>
<td>AMPS</td>
<td>HI PR</td>
<td>LO PR</td>
</tr>
<tr>
<td>65</td>
<td>39.9 40.8 43.5 46.5 49.0</td>
<td>0.94 0.88 0.71 0.53</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>75</td>
<td>39.9 40.8 43.5 46.5 49.0</td>
<td>38.0 39.6 41.5 44.0 46.6</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>85</td>
<td>39.9 40.8 43.5 46.5 49.0</td>
<td>37.1 39.1 41.5 43.6 45.7</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>95</td>
<td>39.9 40.8 43.5 46.5 49.0</td>
<td>37.1 39.1 41.5 43.6 45.7</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>105</td>
<td>39.9 40.8 43.5 46.5 49.0</td>
<td>36.9 39.2 41.6 43.9 46.2</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
<tr>
<td>115</td>
<td>39.9 40.8 43.5 46.5 49.0</td>
<td>36.9 39.2 41.6 43.9 46.2</td>
<td>0.93 0.91 0.74 0.55</td>
<td>0.99 0.96 0.78 0.59</td>
<td>1.00 1.00 0.81 0.61</td>
<td>1.00 1.00 0.82 0.61</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects AHRI rating conditions.

IDB: Entering Indoor Dry Bulb Temperature
K/W: Total system power
COOLING PERFORMANCE DATA

Design Subcooling, 10 ± 2 °F at the liquid access fitting connection

AHRI 95 test conditions. Design Superheat 10 ± 2°F at the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>MBh</td>
<td>S/T</td>
<td>Delta T</td>
<td>High Pressure (Hi PR)</td>
<td>Low Pressure (Lo PR)</td>
<td></td>
</tr>
<tr>
<td>1800°F</td>
<td>45.6</td>
<td>0.76</td>
<td>2.94</td>
<td>12.7</td>
<td>236</td>
<td>110</td>
</tr>
<tr>
<td>59</td>
<td>47.2</td>
<td>0.64</td>
<td>3.01</td>
<td>13.0</td>
<td>254</td>
<td>117</td>
</tr>
<tr>
<td>63</td>
<td>50.1</td>
<td>0.66</td>
<td>3.24</td>
<td>13.4</td>
<td>264</td>
<td>112</td>
</tr>
<tr>
<td>67</td>
<td>50.1</td>
<td>0.46</td>
<td>3.34</td>
<td>13.4</td>
<td>301</td>
<td>122</td>
</tr>
<tr>
<td>71</td>
<td>50.1</td>
<td>0.49</td>
<td>3.36</td>
<td>13.5</td>
<td>342</td>
<td>127</td>
</tr>
<tr>
<td>59</td>
<td>45.0</td>
<td>0.61</td>
<td>4.59</td>
<td>50.2</td>
<td>42.2</td>
<td>116</td>
</tr>
<tr>
<td>63</td>
<td>46.3</td>
<td>0.64</td>
<td>4.48</td>
<td>49.1</td>
<td>42.7</td>
<td>116</td>
</tr>
<tr>
<td>67</td>
<td>46.6</td>
<td>0.64</td>
<td>4.47</td>
<td>49.1</td>
<td>42.7</td>
<td>116</td>
</tr>
<tr>
<td>71</td>
<td>46.6</td>
<td>0.64</td>
<td>4.47</td>
<td>49.1</td>
<td>42.7</td>
<td>116</td>
</tr>
</tbody>
</table>

Note

- **MBh**: Mass Flow Rate
- **S/T**: Superheat Temperature
- **Delta T**: Superheat Differential Temperature
- **Hi PR**: High Pressure
- **Lo PR**: Low Pressure
- **IDB**: Entering Indoor Dry Bulb Temperature
- **NOTE**: Shaded area is ACCA (TVA) conditions.
- **High and low pressures are measured at the liquid and suction access fittings.**

PC1448H41AB/C/D
COOLING PERFORMANCE DATA

**MODEL: *PC1448H41AB*/C*/D*/

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>S/T</th>
<th>0.95</th>
<th>0.89</th>
<th>0.73</th>
<th>0.54</th>
<th>1.00</th>
<th>0.92</th>
<th>0.75</th>
<th>0.56</th>
<th>1.00</th>
<th>0.95</th>
<th>0.77</th>
<th>0.58</th>
<th>1.00</th>
<th>1.00</th>
<th>0.80</th>
<th>0.60</th>
<th>1.00</th>
<th>1.00</th>
<th>0.83</th>
<th>0.62</th>
<th>1.00</th>
<th>1.00</th>
<th>0.83</th>
<th>0.62</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td>23</td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>23</td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>21</td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>20</td>
<td>20</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entering Indoor Wet Bulb Temperature

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HI PR</td>
<td>240</td>
<td>259</td>
<td>273</td>
<td>285</td>
<td>150</td>
<td>153</td>
<td>156</td>
<td>163</td>
<td>159</td>
<td>163</td>
<td>170</td>
<td>177</td>
<td>168</td>
<td>172</td>
<td>177</td>
<td>184</td>
<td>178</td>
<td>182</td>
<td>187</td>
<td>194</td>
<td>201</td>
<td>206</td>
<td>212</td>
<td>218</td>
</tr>
<tr>
<td>LO PR</td>
<td>113</td>
<td>121</td>
<td>131</td>
<td>141</td>
<td>124</td>
<td>132</td>
<td>144</td>
<td>156</td>
<td>130</td>
<td>138</td>
<td>147</td>
<td>156</td>
<td>136</td>
<td>145</td>
<td>156</td>
<td>174</td>
<td>141</td>
<td>150</td>
<td>164</td>
<td>174</td>
<td>183</td>
<td>192</td>
<td>200</td>
<td>208</td>
</tr>
</tbody>
</table>

Outdoor Liquid Transfer Temperature

<table>
<thead>
<tr>
<th>S/T</th>
<th>0.91</th>
<th>0.85</th>
<th>0.69</th>
<th>0.52</th>
<th>0.94</th>
<th>0.88</th>
<th>0.72</th>
<th>0.54</th>
<th>0.96</th>
<th>0.90</th>
<th>0.74</th>
<th>0.55</th>
<th>0.99</th>
<th>0.93</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delta T</td>
<td>23</td>
<td>22</td>
<td>19</td>
<td>15</td>
<td>24</td>
<td>23</td>
<td>20</td>
<td>16</td>
<td>24</td>
<td>23</td>
<td>20</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Delta T

<table>
<thead>
<tr>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
<th>59</th>
<th>63</th>
<th>67</th>
<th>71</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBlh</td>
<td>47.2</td>
<td>48.2</td>
<td>51.5</td>
<td>55.0</td>
<td>46.1</td>
<td>47.1</td>
<td>50.3</td>
<td>53.8</td>
<td>45.0</td>
<td>46.0</td>
<td>49.1</td>
<td>52.5</td>
<td>43.9</td>
<td>44.8</td>
<td>47.9</td>
</tr>
<tr>
<td>S/T</td>
<td>0.95</td>
<td>0.89</td>
<td>0.73</td>
<td>0.54</td>
<td>1.00</td>
<td>0.92</td>
<td>0.75</td>
<td>0.56</td>
<td>1.00</td>
<td>0.95</td>
<td>0.77</td>
<td>0.58</td>
<td>1.00</td>
<td>1.00</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Delta T

High and low pressures are measured at the liquid and suction access fittings.

AMPs: Unit amps (comp. + evaporator + condenser fan motors)

NOTE: Shaded area reflects AHRI rating conditions.

IDB: Entering indoor dry bulb temperature

KW: Total system power

AMPS: Unit amps (compressor + evaporator + condenser fan motors)

COOLING PERFORMANCE DATA

**MODEL: *PC1448H41AB*/C*/D*/

Design Subcooling, 10 ± 2°F @ the liquid access fitting connection AHRI 95 test conditions. Design Superheat 10 ± 2°F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Liquid Transfer Temperature</th>
<th>Outdoor Dry Bulb Temperature</th>
<th>Outdoor Wet Bulb Temperature</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/T</td>
<td>Delta T</td>
<td>AMPS</td>
</tr>
<tr>
<td>0.91</td>
<td>23</td>
<td>2.99</td>
</tr>
<tr>
<td>0.85</td>
<td>22</td>
<td>3.05</td>
</tr>
<tr>
<td>0.69</td>
<td>19</td>
<td>3.15</td>
</tr>
<tr>
<td>0.52</td>
<td>15</td>
<td>3.25</td>
</tr>
<tr>
<td>0.94</td>
<td>24</td>
<td>3.43</td>
</tr>
<tr>
<td>0.88</td>
<td>23</td>
<td>3.50</td>
</tr>
<tr>
<td>0.72</td>
<td>20</td>
<td>3.62</td>
</tr>
<tr>
<td>0.54</td>
<td>16</td>
<td>3.74</td>
</tr>
<tr>
<td>0.96</td>
<td>24</td>
<td>3.81</td>
</tr>
<tr>
<td>0.90</td>
<td>22</td>
<td>3.94</td>
</tr>
<tr>
<td>0.74</td>
<td>19</td>
<td>3.97</td>
</tr>
<tr>
<td>0.55</td>
<td>15</td>
<td>4.11</td>
</tr>
<tr>
<td>0.99</td>
<td>24</td>
<td>4.26</td>
</tr>
</tbody>
</table>

NOTE: Shaded areas is AHRI Rating Conditions
COOLING PERFORMANCE DATA

MODEL: *PC1460H41B/C/D*

COOLING OPERATION

Design Subcooling, 6 ± 2 °F @ the liquid access fitting connection AHRI 95 test conditions. Design Superheat 9 ± 2°F @ the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>120°F</th>
<th>130°F</th>
<th>140°F</th>
<th>150°F</th>
<th>160°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>59°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Entering Indoor Wet Bulb Temperature

<table>
<thead>
<tr>
<th>Temperature</th>
<th>0°F</th>
<th>5°F</th>
<th>10°F</th>
<th>15°F</th>
<th>20°F</th>
<th>25°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>60°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Temperature</th>
<th>120°F</th>
<th>130°F</th>
<th>140°F</th>
<th>150°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>59°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61°F</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Shaded area is ACCA (TVA) conditions

High and low pressures are measured at the liquid and suction access fittings.

*See *PC1460H41B/C/D* model for complete performance data.*
EXPANDED PERFORMANCE DATA

COOLING OPERATION

Design Subcooling, 6 ± 2 °F at the liquid access fitting connection.

AHRI 95 test conditions. Design Superheat 9 ± 2 °F at the compressor suction access fitting connection.

Outdoor Ambient Temperature

<table>
<thead>
<tr>
<th>Outdoor Ambient Temperature</th>
<th>65</th>
<th>75</th>
<th>85</th>
<th>95</th>
<th>105</th>
<th>115</th>
</tr>
</thead>
<tbody>
<tr>
<td>Entering Indoor Wet Bulb Temperature</td>
<td>MBh</td>
<td>S/T</td>
<td>Delta T</td>
<td>KW</td>
<td>AMPS</td>
<td>HI PR</td>
</tr>
<tr>
<td>1800</td>
<td>58.3</td>
<td>0.89</td>
<td>16.0</td>
<td>3.77</td>
<td>243</td>
<td>245</td>
</tr>
<tr>
<td>59.6</td>
<td>0.84</td>
<td>16.3</td>
<td>3.85</td>
<td>247</td>
<td>249</td>
<td>238</td>
</tr>
<tr>
<td>63.7</td>
<td>0.68</td>
<td>14.0</td>
<td>3.98</td>
<td>249</td>
<td>251</td>
<td>239</td>
</tr>
<tr>
<td>68.1</td>
<td>0.51</td>
<td>12.7</td>
<td>4.11</td>
<td>251</td>
<td>253</td>
<td>240</td>
</tr>
<tr>
<td>50.3</td>
<td>0.92</td>
<td>8.0</td>
<td>4.76</td>
<td>253</td>
<td>255</td>
<td>242</td>
</tr>
<tr>
<td>55.9</td>
<td>0.70</td>
<td>6.7</td>
<td>5.31</td>
<td>255</td>
<td>257</td>
<td>244</td>
</tr>
<tr>
<td>61.5</td>
<td>0.53</td>
<td>5.4</td>
<td>5.89</td>
<td>257</td>
<td>259</td>
<td>246</td>
</tr>
<tr>
<td>56.3</td>
<td>0.53</td>
<td>4.1</td>
<td>6.47</td>
<td>259</td>
<td>261</td>
<td>248</td>
</tr>
<tr>
<td>62.2</td>
<td>0.51</td>
<td>2.8</td>
<td>7.05</td>
<td>261</td>
<td>263</td>
<td>250</td>
</tr>
<tr>
<td>66.5</td>
<td>0.53</td>
<td>2.5</td>
<td>7.63</td>
<td>263</td>
<td>265</td>
<td>252</td>
</tr>
<tr>
<td>55.6</td>
<td>0.53</td>
<td>1.2</td>
<td>8.19</td>
<td>265</td>
<td>267</td>
<td>254</td>
</tr>
<tr>
<td>55.6</td>
<td>0.53</td>
<td>0.9</td>
<td>8.78</td>
<td>267</td>
<td>269</td>
<td>256</td>
</tr>
<tr>
<td>60.4</td>
<td>0.53</td>
<td>0.6</td>
<td>9.34</td>
<td>269</td>
<td>271</td>
<td>258</td>
</tr>
<tr>
<td>60.4</td>
<td>0.53</td>
<td>0.3</td>
<td>9.90</td>
<td>271</td>
<td>273</td>
<td>260</td>
</tr>
<tr>
<td>64.9</td>
<td>0.53</td>
<td>0.0</td>
<td>10.46</td>
<td>273</td>
<td>275</td>
<td>262</td>
</tr>
<tr>
<td>64.9</td>
<td>0.53</td>
<td>-0.3</td>
<td>10.92</td>
<td>275</td>
<td>277</td>
<td>264</td>
</tr>
<tr>
<td>69.4</td>
<td>0.53</td>
<td>-0.6</td>
<td>11.38</td>
<td>277</td>
<td>279</td>
<td>266</td>
</tr>
<tr>
<td>69.4</td>
<td>0.53</td>
<td>-1.2</td>
<td>11.94</td>
<td>279</td>
<td>281</td>
<td>268</td>
</tr>
<tr>
<td>74.9</td>
<td>0.53</td>
<td>-1.8</td>
<td>12.50</td>
<td>281</td>
<td>283</td>
<td>270</td>
</tr>
<tr>
<td>74.9</td>
<td>0.53</td>
<td>-2.4</td>
<td>13.06</td>
<td>283</td>
<td>285</td>
<td>272</td>
</tr>
<tr>
<td>80.4</td>
<td>0.53</td>
<td>-3.0</td>
<td>13.62</td>
<td>285</td>
<td>287</td>
<td>274</td>
</tr>
<tr>
<td>80.4</td>
<td>0.53</td>
<td>-3.6</td>
<td>14.18</td>
<td>287</td>
<td>289</td>
<td>276</td>
</tr>
</tbody>
</table>

NOTE: Shaded area reflects AHRI rating conditions.

*NOTE: Shaded areas are AHRI Rating Conditions.

IDB: Entering Indoor Dry Bulb Temperature

KW: Total system power

High and low pressures are measured at the liquid and suction access fittings.

AMPS: Unit amps (compressor + evaporator + condenser fan motors)
All data based upon listed indoor dry bulb temperature. .00 inches external static pressure on coil of outdoor section. Indoor air cubic feet per minute (CFM) as listed in the Performance Data Sheets:

If conditions vary from this, results will change as follows:

1. As indoor dry bulb temperatures increase, a slight increase will occur in indoor air temperature drop (Delta T). Low and high side pressures and power will not change.

2. As indoor CFM decreases, a slight increase will occur in indoor temperature drop (Delta T). A slight decrease will occur in low and high side pressures and power.

A properly operating unit should be within plus or minus 3 degrees of the typical (ΔT) value shown.
A properly operating unit should be within plus or minus 7 PSIG of the HI PR shown.
A properly operating unit should be within plus or minus 3 PSIG of the LO PR shown.
A properly operating unit should be within plus or minus 3 Amps of the typical value shown.
Wiring is subject to change. Always refer to the wiring diagram on the unit for the most up-to-date wiring.
WARNING
HIGH VOLTAGE!
DISCONNECT ALL POWER BEFORE SERVICING OR INSTALLING THIS UNIT. MULTIPLE POWER SOURCES MAY BE PRESENT. FAILURE TO DO SO MAY CAUSE PROPERTY DAMAGE, PERSONAL INJURY OR DEATH.

NOTE #2
(IF USED) SEE NOTE 4

NOTE #3
(SEENOTE 2

NOTE #4
(SA)(IF USED) SEE NOTE 4

NOTE #5
(SEENOTE5

COMPONENT LEGEND
C CONTACTOR
CM CONDENSER MOTOR
COMP COMPRESSOR
EM EVAPORATOR MOTOR
GND EQUIPMENT GROUND
LVJB LOW VOLTAGE JUNCTION BOX
PLF FEMALE PLUG / CONNECTOR
RCCF RUN CAPACITOR FOR COMPRESSOR AND FAN
SA START ASSIST
TR TRANSFORMER
HPS HIGH PRESSURE SWITCH

FACTORY WIRING
LOW VOLTAGE
OPTIMAL HIGH VOLTAGE
LOW VOLTAGE
FIELD WIRING
LOW VOLTAGE
HIGH VOLTAGE

WIRE CODE
BK BLACK
BL BLUE
BR BROWN
GR GREEN
OR ORANGE
PU PURPLE
RD RED
WH WHITE
YL YELLOW

NOTES:
1. REPLACEMENT WIRE MUST BE SAME SIZE AND TYPE INSULATION AS ORIGINAL (AT LEAST 105°C) USE COPPER CONDUCTOR ONLY.
2. TO CHANGE EVAPORATOR MOTOR SPEED MOVE WHITE AND YELLOW LEADS FROM EM "2" AND "3" TO "4" AND "5". IF BOTH LEADS ARE ENERGIZED, THE HIGHER SPEED Setting IS USED.
3. FOR 208 VOLT TRANSFORMER OPERATION MOVE PURPLE WIRES FROM TERMINAL 3 TO TERMINAL 2 ON TRANSFORMER.
4. START ASSIST FACTORY EQUIPPED WHEN REQUIRED
5. USE COPPER CONDUCTORS ONLY.
++ USE N.E.C. CLASS 2 WIRE

SEE UNIT RATING PLATE FOR TYPE AND SIZE OF OVER CURRENT PROTECTION

SEE NOTE 5

Wiring is subject to change. Always refer to the wiring diagram on the unit for the most up-to-date wiring.